Hobson, E. W. The theory of spherical and ellipsoidal harmonics. (English) Zbl 0004.21001 Cambridge: Univ. Press. XI, 500 S. (1931). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 311 Documents Keywords:analysis PDFBibTeX XML Digital Library of Mathematical Functions: §14.11 Derivatives with Respect to Degree or Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions §14.16(iii) Interval 1<𝑥<∞ ‣ §14.16 Zeros ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions §14.16(ii) Interval -1<𝑥<1 ‣ §14.16 Zeros ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions §14.1 Special Notation ‣ Notation ‣ Chapter 14 Legendre and Related Functions §14.20(x) Zeros and Integrals ‣ §14.20 Conical (or Mehler) Functions ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions §14.27 Zeros ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions §14.27 Zeros ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions §14.3(i) Interval -1<𝑥<1 ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions Ferrers Function of the Second Kind ‣ §14.3(i) Interval -1<𝑥<1 ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions Chapter 14 Legendre and Related Functions §29.18(iii) Spherical and Ellipsoidal Harmonics ‣ §29.18 Mathematical Applications ‣ Applications ‣ Chapter 29 Lamé Functions Chapter 29 Lamé Functions