×

zbMATH — the first resource for mathematics

Sulle connessioni proiettive. (Italian) Zbl 0004.30807

Keywords:
geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Blaschke Vorlesungen über Differentialgeometrie, II. Affine Differentialgeometrie (Berlin, Springer, 1923).
[2] É. Cartan,Les espaces à connexion conforme [Annales de la Societé Polonaise des Mathématiques, t. II (1923), pp. 171–221]. · JFM 50.0493.01
[3] É. Cartan,Sur les variétés à connexion projective [Bulletin de la Société Mathématique de France, t. 52 (1924), pp. 205–241]. · JFM 50.0500.02
[4] É. Cartan,Sur la connexion projective des surfaces [Comptes Rendus de l’Académie des Sciences, Paris, t. 178, (1er semestre, 1924), pp. 750–752]. · JFM 50.0480.02
[5] J. A. Schouten,Der Ricci-Kalkül (Berlin, Springer, 1924).
[6] J. A. Schouten,On the place of conformal and projective geometry in the theory of linear displacements [Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 27 (1924), pp. 407–424].
[7] V. Hlavatý,Sur le déplacement linéaire du point [Vestniku České Akademie, vol. 13 (1924), II, pp. 1–8].
[8] T. Y. Thomas,On the projective and equi-projective geometry of paths [Proceedings of the National Academie of Sciences of the U. S. A., vol. 11 (1925), pp. 199–203]. · JFM 51.0569.03
[9] J. M. Thomas,Conformal correspondence of Riemann space (Ibid., pp. 257–259). · JFM 51.0569.01
[10] T. Y. Thomas,Invariants of relative quadratic differential forms (Ibid., pp. 722–725). · JFM 51.0325.02
[11] T. Y. Thomas On conformal geometry [Ibid., vol. 12 (1926), pp. 352–359]. · JFM 52.0736.01
[12] J. M. Thomas Conformal invariants (Ibid., pp. 389–393.
[13] T. Y. Thomas,A projective theory of affinely connected manifolds [Mathematische Zeitschrift, Band 25 (1926), pp. 723–733]. · JFM 52.0732.02
[14] J. A. Schouten,Erlanger Programm und Uebertragungslehre. Neur Gesichtpunkte zur Grundlegung der Geometrie [Rendiconti del Circolo Matematico di Palermo, vol. 50 (1926), pp. 142–169]. · JFM 52.0721.03
[15] G. Fubini edE. Čech,Geometria Proiettiva Differenziale. Due volumi (Bologna, Zanichelli, 1926–1927).
[16] E. Bompiani,Alcune idee generali per lo studio differenziale delle varietà [Rendiconti dell’Accademia Nazionale dei Lincei, serie 6a, vol. 50 (1927), pp. 383–389]. · JFM 53.0687.05
[17] E. Bortolotti,Sistemi assiali e connessioni nelle V n (Ibid., pp. 390–395).
[18] L. P. Eisenhart,Non-Riemannian Geometry (American Mathematical Society Colloquium Publications, vol. VIII, New York, 1927).
[19] O. Veblen,Projective tensors and connections [Proceedings of the National Academy of Sciences of the U. S. A., vol. 14 (1928), pp. 154–166]. · JFM 54.0803.02
[20] O. Veblen,Conformal tensors and connections (Ibid. pp. 735–745). · JFM 54.0757.04
[21] O. Veblen,Differential invariants and Geometry [Atti del Congresso Internazionale dei Matematici, Bologna (1928), vol. I, pp. 181–189].
[22] E. Bompiani,Teoremi generali sui sistemi di spazi e di punti [Rendiconti del Circolo Matematico di Palermo, vol. 52 (1928), pp. 447–457]. · JFM 54.0778.01
[23] E. Bortolotti,Alcuni risultati di geometria proiettiva-differenziale [Bollettino dell’Unione Matematica Italiana, vol. VII (1928), pp. 178–184]. · JFM 54.0778.03
[24] V. Hlavatý,Sugli invarianti differenziali di una forma bilineare mista [Annali di Matematica, serie IV, t. VI (1928–29), pp. 113–126].
[25] J. A. Schouten eV. Hlavatý Zur Theorie der allemeinen linearen Uebertragung [Mathematische Zeitschrift, Band 30 (1929), pp. 414–432]. · JFM 55.1029.03
[26] O. Veblen,Generalized projective geometry [Journal of the London Matematical Society, vol. 4 (1929), pp. 140–160]. · JFM 55.0413.02
[27] H. Weyl,On the foundations of general infinitesimal geometry [Bulletin of the American Mathematical Scoiety, vol. 35 (1929), pp. 716–725]. · JFM 55.1027.01
[28] E. Bortolotti,Sulle properietd proiettive delle deformazioni infinitesime di una superficie in sè [Rendiconti del Circolo Matematico di Palermo, to. 54 (1930), pp. 97–111]. · JFM 56.0641.03
[29] O. Veblen,A generalisation of the quadratic differential form [The Quarterly Journal of Mathematics, Oxford Series, vol. I (1930). pp. 60–76]. · JFM 56.0630.03
[30] O. Veblen andB. Hoffmann,Projective Relativity [Physical Review, vol. 36 (1930), pp. 810–822]. · JFM 57.1577.02
[31] E. Bortolotti,Sulla geometria delle varietà connessione affine. Teoria invariantiva delle trasformazioni che conservano il parallelismo [Annali di Matematica, serie IV, t. VIII (1930), pp. 53–101]. · JFM 56.0623.02
[32] S. Golab,Ueber verallgemeinerte projective [Prace Matematyczno-Fizyczne, Warszawa, t. 37 (1930), pp. 91–153].
[33] J. A. Schouten edS. Golab Uber projective Uebertragungen und Ableitungen (I) [Mathematische Zeitschrift Band 32 (1930), pp. 192–214] e (II) [Annali di Matematica, serie IV, t. VIII (1930), pp. 141–157]. · JFM 56.0627.02
[34] J. H. C. Whitehead,on a class of projectively flat affine connections [Proceedings of the London Mathematical Society, series 2, vol. 32 (1931), pp. 93–114]. · Zbl 0001.16502
[35] J. H. C. Whitehead,The representation of projective spàces [Annals of Mathematics, series 2, vol. 32 (1931), pp. 327–360]. · Zbl 0002.15201
[36] E. Bortolotti Differential invariants of direction and point displacements (Ibid., pp. 361–377). · Zbl 0002.05202
[37] J. Kanitani Géométrie differentielle projective des hypersurfaces. (Ryojun, 1931).
[38] E. Bortolotti,Connessioni proiettive [Bolletion dell’Unione Matematica Italiana, vol. IX (1930), pp. 288–294 (I), e vol. X (1931) pp. 28–34 (II) e pp. 83–90 (III)].
[39] E. Bortolotti,Sulle varietà subordinate [Rendiconti de R. Istituto Lombardo, vol. 64 (1931), pp. 441–463]. · JFM 57.0913.01
[40] E. Bortolotti,Forme di Fubini e connessioni proiettive nelle ipersuperficie di S n [Rendiconti del Seminario della Facoltà di Scienze della R. Università di Cagliari, anno I (1931), pp. 38–44].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.