×

zbMATH — the first resource for mathematics

Spazi proiettivamente piani. (English) Zbl 0005.41303

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Cayley,A sixth memoir upon quantics, « Philos. Trans. of the Roy. Society of London », 1859; oppure, « Collected Papers », London, vol. II, 1889.
[2] Beltrami, E., Risoluzione del problema: Riportare i punti di una superficie sopra un piano, in modo che le linee geodetiche vengano rappresentate da linee rette, Annali di Matem., 7, 1, 185-204 (1865)
[3] Beltrami, E., Saggio di interpretazione della Geometria non-euclidea, Giornale di Matematiche, 6, 284-312 (1868) · JFM 01.0275.02
[4] Beltrami, E., Teoria fondamentale degli spazii di curvatura costante, Annali di Matem., 2, 2, 232-255 (1868) · JFM 01.0208.03
[5] Dini, U., Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di un’altra, Annali di Matem., 3, 2, 269-293 (1869) · JFM 02.0622.02
[6] Schläfli, L., Nota alla Memoria del sig. Beltrami, « Sugli spazii di curvatura costante », Annali di Matem., 5, 2, 178-193 (1871) · JFM 04.0241.03
[7] Klein, F., Ueber die sogenannte Nicht-Euklidische Geometrie, Mathem. Annalen, 4, 573-625 (1871) · JFM 03.0231.02
[8] F. Klein,Ueber einen Satz aus der Analysis situs, « Göttinger Nachrichten », Nr. 14 1872; « Ges. Math. Abhandl. », I. Band, 306-310.
[9] Schur, F., Ueber den Zusammenhang der Räume constanten Riemann’schen Krümmungsmaasses mit den projectiven Räumen, Mathem. Annalen, 27, 537-567 (1886) · JFM 18.0713.02
[10] G. Veronese,Fondamenti di Geometria, Padova, Tip. del Seminario, 1891.
[11] Hilbert, D., Grundlagen der Geometrie (1930), Leipzig: B. G. Teubner, Leipzig
[12] Bianchi, L., Lezioni di Geometria Differenziale (1894), Pisa: Spoerri, Pisa · JFM 25.1165.01
[13] Darboux, G., Leçons sur la théoric générale des surfaces, III (1894), Paris: Gauthier-Villars, Paris
[14] Tedone, O., Sulla teoria degli spazî a curvatura costante, Rendiconti Istit. Lombardo, 32, 2, 592-609 (1899)
[15] Enriques, F., Sopra le superficie e le varietà a più dimensioni le cui geodetiche sono rappresentabili con equazioni lineari, Rendiconti Accad. Bologna, 7, 2, 52-58 (1902)
[16] F. Schur,Grundlagen der Geometrie, B. G. Teubner, 1909.
[17] H. Weyl,Zur Infinitesimal geometrie: Einordnung der projektiven und der konformen Auffassung. « Göttinger Nachrichten », 1921, 99-112.
[18] Eisenhart, L. P.; Veblen, O., The Riemann Geometry and its generalization, Proceedings Nation. Acad. of Sciences of the U. S. A., 8, 19-23 (1922) · JFM 48.0842.02
[19] Weyl, H., Mathematische Analyse des Raumproblems (1923), Berlin: Springer, Berlin · JFM 49.0625.01
[20] Blaschke, W., Vorlesungen über Differentialgeometrie, II,Affine Differentialgeometrie (1923), Berlin: Springer, Berlin
[21] Cartan, É., Les récentes généralisations de la notion d’espace, Bulletin des Sciences Mathém., 48, 294-320 (1924) · JFM 50.0589.01
[22] Cartan, É., Sur les variétés à connexion projective, Bull. Soc. Mathém., 52, 205-241 (1924) · JFM 50.0500.02
[23] Schouten, J. A., On the place of conformal and projective geometry in the theory of linear displacements, Proceedings Kon. Akad. Amsterdam, 27, 407-424 (1924)
[24] Schouten, J. A., Der Ricci-Kalkül (1924), Berlin: Springer, Berlin
[25] Thomas, J. M., Conformal correspondence of Riemann spaces, Proc. Nation. Acad., 11, 257-259 (1925) · JFM 51.0569.01
[26] Thomas, T. Y., Invariants of relative quadratics differential forms, Proc. Nation. Acad., 11, 722-725 (1925) · JFM 51.0325.02
[27] Thomas, T. Y., On conformal geometry, Proc. Nation. Acad., 12, 352-359 (1926) · JFM 52.0736.01
[28] Thomas, J. M., Conformal invariants, Proc. Nation. Acad., 12, 389-393 (1926) · JFM 52.0736.02
[29] L. P. Eisenhart,Riemannian Geometry, Princeton 1926.
[30] Fubini, G., Sulla teoria delle superficie Re delle loro trasformazioni, Rendic. Accad. Lincei, 4, 6, 81-85 (1926) · JFM 52.0716.07
[31] Fubini, G., Proprietà proiettive delle superficie a curvatura metrica costante, Rendic. Accad. Lincei, 4, 6, 167-171 (1926) · JFM 52.0760.02
[32] Veblen, O.; Thomas, J. M., Projective invariants affine geometry of paths, Annals of Mathem., 27, 2, 279-296 (1926) · JFM 52.0732.01
[33] Thomas, T. Y., A projective theory of affinely connected manifolds, Mathem. Zeitschrift, 25, 723-733 (1926) · JFM 52.0732.02
[34] É. Cartan,L’axiome du plan et la géométrie différentielle métrique, « In memoriam N. I. Lobacevski », vol. II, Kazan, 1926.
[35] Schouten, J. A., Erlanger Programm und Uebertragunslehre: neue Gesichtpunkte zur Grundlegung der Geometrie, Rend. Circ. Matem. Palermo, 50, 142-169 (1926) · JFM 52.0721.03
[36] Eisenhart, L. P., Geometries of paths for which the equations of the paths admit n(n+1)/2independent linear first integrals, Trans. Amer. Mathm. Society, 28, 330-338 (1926) · JFM 52.0731.01
[37] L. P. Eisenhart,Non-riemannian Geometry, New York, 1927. · JFM 53.0681.02
[38] Veblen, O., Projective tensors and connections, Proc. Nation. Acad., 14, 154-166 (1928) · JFM 54.0803.02
[39] Veblen, O., Conformal tensors and connections, Proc. Nation. Acad., 14, 735-745 (1928) · JFM 54.0757.04
[40] Cartan, É., Leçons sur la géométrie des espaces de Riemann (1928), Paris: Gauthier-Villars, Paris · JFM 54.0755.01
[41] Veblen, O., Generalized Projective Geometry, Journal of the London Mathem. Society, 4, 140-160 (1929) · JFM 55.0413.02
[42] S. Golab,Einige projektive Eigenschaften der affinen Geometrie, « Comptes Rendus du Premier Congrès des Mathématiciens des Pays Slaves », Warszawa 1929, 339-340.
[43] Veblen, O., A generalisation of the quadratic differential form, Quarterly Journ. of Mathem., I, 60-76 (1930) · JFM 56.0630.03
[44] Veblen, O.; Hoffmann, B., Projective Relativity, Physical Review, 36, 810-822 (1930) · JFM 57.1577.02
[45] Golab, S., Ueber verallgemeinerte projektive Geometrie, Prace Matematyczno Fizyczne, 37, 91-153 (1930) · JFM 56.1194.01
[46] A. Duschek eW. Mayer,Lehrbuch der Differentialgeometrie, Band II (W. Mayer),Riemannsche Geometrie, B. G. Teubner 1930. · JFM 56.0580.01
[47] Bortolotti, E., Geometria delle varietà a connessione affine. Teoria invariantiva delle trasformazioni che conservano il parallelismo, Annali di Matem., VIII, 4, 53-101 (1930) · JFM 56.0623.02
[48] Bortolotti, E., Connessioni proiettive, Bollettino Un. Matem. Italiana, 9, 288-294 (1930) · JFM 56.0626.01
[49] Whitehead, J. H. C., On a class of projectively flat affine connections, Proc. of the London Mathem. Society, 32, 2, 93-114 (1931) · Zbl 0001.16502
[50] Whitehead, J. H. C., The representation of projective spaces, Annals of Mathem., 32, 2, 327-360 (1931) · JFM 57.0909.02
[51] F. Schilling,Projektive und nichteuklidische Geometrie, I e II, B. G. Teubner, 1931.
[52] Schouten, J. A.; Van Dantzig, D., Ueber eine vierdimensionale Deutung der neuesten Feldtheorie, Proc. Kon. Akad. v. Wetenschappen, 34, 1398-1407 (1931) · Zbl 0004.23004
[53] Van Dantzig, D., Theorie der projektiven Zusanmmenhangs n-dimensionaler Räumen, Mathem. Annalen, 106, 400-454 (1932) · Zbl 0004.12906
[54] Thomas, T. Y., Conformal tensors, Proc. Nation. Acad., 18, 103-112 (1932) · Zbl 0003.36501
[55] Bortolotti, E., Sulle connessioni proiettive, Rendiconti Circ. Matem. di Palermo, 56, 1-57 (1932) · JFM 58.0760.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.