×

zbMATH — the first resource for mathematics

Sufficient conditions for a problem of Mayer in the calculus of variations. (English) Zbl 0006.25903

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kneser, Lehrbuch der Variationsrechnung, Braunschweig, 1900, pp. 227-261.
[2] D. Egorow, Die hinreichenden Bedingungen des Extremums in der Theorie des Mayerschen Problems, Math. Ann. 62 (1906), no. 3, 371 – 380 (German). · JFM 37.0391.01
[3] Oskar Bolza, Über den ”Anormalen Fall” beim Lagrangeschen und Mayerschen Problem mit gemischten Bedingungen und variablen Endpunkten, Math. Ann. 74 (1913), no. 3, 430 – 446 (German). · JFM 44.0447.02
[4] Goursat, A Course in Mathematical Analysis, translated by Hedrick and Dunkel, vol. 2, Part 2. · JFM 35.0293.01
[5] Gilbert Ames Bliss, The problem of Mayer with variable end points, Trans. Amer. Math. Soc. 19 (1918), no. 3, 305 – 314. · JFM 46.0758.04
[6] Gillie A. Larew, Necessary conditions in the problems of Mayer in the calculus of variations, Trans. Amer. Math. Soc. 20 (1919), no. 1, 1 – 22. · JFM 47.0477.02
[7] Gillie A. Larew, The Hilbert integral and Mayer fields for the problem of Mayer in the calculus of variations, Trans. Amer. Math. Soc. 26 (1924), no. 1, 61 – 67. · JFM 50.0338.03
[8] Kneser, Lehrbuch der Variationsrechnung, 2d edition, Braunschweig, 1925, pp. 240-304. · JFM 51.0371.07
[9] Bliss, The problem of Lagrange in the calculus of variations, American Journal of Mathematics, vol. 52 (1930), pp. 673-742. · JFM 56.0435.01
[10] Morse and Myers, The problems of Lagrange and Mayer with variable end points, Proceedings of the American Academy of Arts and Sciences, vol. 66 (1931), pp. 235-253. · JFM 57.0596.02
[11] Marston Morse, Sufficient Conditions in the Problem of Lagrange with Variable End Conditions, Amer. J. Math. 53 (1931), no. 3, 517 – 546. · Zbl 0002.14101
[12] Gilbert Ames Bliss, The problem of Bolza in the calculus of variations, Ann. of Math. (2) 33 (1932), no. 2, 261 – 274. · Zbl 0004.15502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.