×

Sulle direzioni di Borel di funzioni olomorfe. (Italian) Zbl 0008.31801

Full Text: DOI

References:

[1] G. Valiron,Integral functions, Toulouse, 1923, p. 64. · JFM 50.0254.01
[2] Phragmén eLindelöf (« Acta Math. », 31, 1908, p. 394) eValiron (« Ann. Fac. Sc. Toulouse », t. 5, 1913, p. 233).
[3] Pólya (« Math. Zeitschr. », 29, 1929, p. 549).
[4] Phragmèn eLindelöf (l. c.).
[5] « Comptes Rendus », t. 194, 1932, p. 1306.
[6] Valiron (l. c. nella nota precedente) eM. L. Cartwright (« Comptes Rendus », t. 194, 1932, p. 1891).
[7] Cartwright (l. c.).
[8] « Ann. Ec. Norm. Sup. », t. 45, 1928, p. 273.
[9] « Acta Math. », 1903.
[10] Cfr. p. es.Valiron (op. c. a p. 173, p. 48).
[11] Landau,Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig, 1909, p. 299. · JFM 40.0232.08
[12] L’idea di ricorrere alla formola diCarathéodory è dovuta (salvo errore) aG. Valiron (cfr. op. cit. a p. 173, p. 89).
[13] Loc. cit. a p. 179.
[14] « Proc. Phys. Math. Soc. Japan », t. 12, 1930, p. 18.
[15] « Ann. Fac. Sc. de Toulouse », t. 5, 1913, pp. 230-232.
[16] Vedi nota a p. 177.
[17] Op. cit. a p. 190, p. 15.
[18] Milloux (« Acta Math. », t. 52, 1928, p. 251) eCartwright (l. c.).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.