Ingham, A. E. Some trigonometrical inequalities with applications to the theory of series. (English) Zbl 0014.21503 Math. Z. 41, 367-379 (1936). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 140 Documents Keywords:Dirichlet series, almost periodic functions × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] V. Bernstein. 1. Le?ons sur les progr?s r?cents de la th?orie des s?ries de Dirichlet (Paris, 1933). · JFM 59.1027.02 [2] A. S. Besicovitch. 1. Almost periodic functions (Cambridge, 1932). [3] S. Bochner. 1. Properties of Fourier series of almost periodic functions, Proc. London Math. Soc. (2)26 (1927), 433-452. · JFM 53.0254.05 · doi:10.1112/plms/s2-26.1.433 [4] S. Bochner. 2. Vorlesungen ?ber Fouriersche Integrale (Leipzig, 1932). · Zbl 0006.11001 [5] F. Carlson and E. Landau. 1. Neuer Beweis und Verallgemeinerungen des Fabryschen L?ckensatzes, G?tt. Nachr. (1921), 184-188. · JFM 48.0329.02 [6] G. H. Hardy, J. E. Littlewood and G. P?lya. 1. Inequalities (Cambridge, 1934). · Zbl 0010.10703 [7] J. Karamata. 1. Sur les th?or?mes de nature tauberienne, Compt. Rend.197 (1933), 888-890. · Zbl 0007.40501 [8] . 2. Weiterf?hrung der N. Wienerschen Methode, Math. Zeitschr.38 (1934), 701-708. · JFM 60.0182.01 · doi:10.1007/BF01170667 [9] A. E. Ingham. 1. On Wiener’s method in Tauberian theorems, Proc. London Math. Soc. (2),38 (1935), 458-480. · Zbl 0010.35202 · doi:10.1112/plms/s2-38.1.458 [10] R. E. A. C. Paley and N. Wiener. 1. Fourier transforms in the complex domain (New York, 1934). · Zbl 0011.01601 [11] G. P?lya. 1. ?ber die Existenz unendlich vieler singul?rer Punkte auf der Konvergenzgeraden gewisser Dirichletscher Reihen, Berl. Sitzungsber. (1923), 45-50. · JFM 49.0228.01 [12] M. Riesz. 1. ?ber die Summierbarkeit durch typische Mittel, Acta Litt. ac Scient. R. Univ. Hung.2 (1924 bis 1926), 18-31. · JFM 50.0156.01 [13] N. Wiener. 1. A class of gap theorems, Annali della R. Scuola Normale Superiore di Pisa (2),3 (1934), 367-372. · JFM 60.0247.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.