Teichmüller, Oswald Zerfallende zyklische \(p\)-Algebren. (English) Zbl 0016.05201 J. Reine Angew. Math. 176, 157-160 (1936). The author proves a generalization of a lemma used by Witt in obtaining a residue formula (cf. the first paper Zbl 0016.05101 of Witt reviewed above). Let \(\mathbf C\) be a perfect subfield of a field \(k\) of characteristic \(p\), \(\alpha\neq 0\) in \(k\), \(\mathbf R\) be the ring of all power series \(c_1\alpha+c_2\alpha^2+\ldots\) with \(c_i\) in \(\mathbf C\). Then if \(\beta\) is a vector of length \(n\) with components in \(\mathbf R\) the cyclic algebra \((\alpha\mid \beta]\)is a total matrix algebra. The author also considers the problem of obtaining all vectors \(\beta\) such that \((\alpha\mid \beta]\sim 1\) for fixed \(\alpha\neq 0\) in an arbitrary \(k\) of characteristic \(p\), and obtains a formula for \(\beta\) in terms of the vector symbolism of Witt. Reviewer: A. A. Albert (Chicago) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 13-XX Commutative algebra Keywords:cyclic p-algebras Citations:Zbl 0016.05101 PDF BibTeX XML Cite \textit{O. Teichmüller}, J. Reine Angew. Math. 176, 157--160 (1936; Zbl 0016.05201) Full Text: Crelle EuDML OpenURL