Schmid, Hermann Ludwig Zur Arithmetik der zyklischen \(p\)-Körper. (German) Zbl 0016.05205 J. Reine Angew. Math. 176, 161-167 (1936). Let \(k\) be a perfect field of characteristic \(p\), \(\mathbf K\) be an algebraic extension of finite degree over a simple transcendental extension of \(k\). Then H. Hasse has developed the arithmetic theory of cyclic fields \(\mathbf Z\) of degree \(p\) over \(\mathbf K\) [“Theorie der relativ-zyklischen algebraischen Funktionenkörper usw.”, J. Reine Angew. Math. 172, 37–54 (1934; Zbl 0010.00501)]. The author uses the new vector symbolism of E. Witt and generalizes Hasse’s results to the case of cyclic fields of degree \(p^n\) over \(\mathbf K\). He also determines which ramification points are Weierstrass points. Reviewer: A. A. Albert (Chicago) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 10 Documents MSC: 11R20 Other abelian and metabelian extensions Keywords:cyclic p-fields Citations:Zbl 0010.00501 PDF BibTeX XML Cite \textit{H. L. Schmid}, J. Reine Angew. Math. 176, 161--167 (1936; Zbl 0016.05205) Full Text: Crelle EuDML OpenURL