×

zbMATH — the first resource for mathematics

On the absolute summability of the allied series of a Fourier series. (English) Zbl 0016.21002

Keywords:
Series
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] L. S. Bosanquet: On abel’s integral equation and fractional integrals. Proc. London Math. Soc. (2),31 (1930), p. 134-143. · JFM 56.0348.01 · doi:10.1112/plms/s2-31.1.134
[2] : On the summability of Fourier series. Proc. London Math. Soc. (2),31 (1930), p. 144-164, and (2),33 (1932), p. 561. · JFM 56.0938.01 · doi:10.1112/plms/s2-31.1.144
[3] : On the Cesàro summation of Fourier series and Allied series. Proc. London Math. Soc. (2),37 (1934). p. 17-32. · Zbl 0008.35101 · doi:10.1112/plms/s2-37.1.17
[4] : The absolute summability (A) of Fourier series. Proc. Edinburgh Math. Soc. (2),4 (1934), p. 12-17. · Zbl 0009.01302 · doi:10.1017/S0013091500024123
[5] : Some extensions of Young’s criterion for the convergence of a Fourier series. Quart. J. of Math. (Oxford Series),6 (1935), p. 113-123. · JFM 61.0279.02 · doi:10.1093/qmath/os-6.1.113
[6] : Note on the absolute summability (C) of Fourier series. Journal London Math. Soc.11 (1936), p. 11-15. · Zbl 0013.26003 · doi:10.1112/jlms/s1-11.1.11
[7] : The absolute Cesàro summability of a Fourier series. Proc. London Math. Soc. (2),41 (1936), p. 517-528. · Zbl 0015.06402 · doi:10.1112/plms/s2-41.6.517
[8] M. Fekete: On the absolute summability (A) of infinite series. Proc. Edinburgh Math. Soc. (2),3 (1933), p. 132-134. · Zbl 0005.10103 · doi:10.1017/S0013091500013894
[9] G. H. Hardy: Notes on some points in the integral calculus (LXVI). The arithmetic mean of a Fourier constant. Messenger of Math.58 (1928), p. 50-52.
[10] G. H. Hardy and J. E. Littlewood: Solution of the Cesàro summability problem for Power series and Fourier series. Math. Zeitschr.19 (1924), p. 67-96. · JFM 49.0232.01 · doi:10.1007/BF01181064
[11] : The Allied series of a Fourier series. Proc. London Math. Soc. (2),24 (1926), p. 211-246. · JFM 51.0222.03 · doi:10.1112/plms/s2-24.1.211
[12] G. H. Hardy and M. Riesz: The General Theory of Dirichlet Series. Cambridge Tract18 (1915). · JFM 45.0387.03
[13] E. W. Hobson: The Theory of Functions of a Real Variable. Vol. 1, (1927).
[14] E. W. Hobson: The Theory of Functions of a Real Variable. Vol. 2, (1926).
[15] J. M. Hyslop: The absolute summability of series by Rieszian means. Proc. Edinburgh Math. Soc. (2),5 (1936), p. 46-54. · Zbl 0015.20801 · doi:10.1017/S0013091500008270
[16] E. Kogbetliantz: Sur les séries absolument sommables par la méthode des moyennes arithmétiques. Bull. des Sciences Math. (2),49 (1925), p. 234-256. · JFM 51.0182.01
[17] N. Obreschkoff: Über die absolute Summierung der Dirichletschen Reihen. Math. Zeitschr.30 (1929), S. 375-386. · JFM 55.0201.01 · doi:10.1007/BF01187777
[18] R. E. A. C. Paley: On the Cesàro summability of Fourier series and Allied series. Proc. Cambridge Phil. Soc.26 (1930), p. 173-203. · JFM 56.0246.01 · doi:10.1017/S0305004100015425
[19] S. Pollard: The summation of Denjoy-Fourier series. Proc. London math. Soc. (2),27 (1928), p. 209-222. · JFM 53.0251.01 · doi:10.1112/plms/s2-27.1.209
[20] B. N. Prasad: On the summability of Fourier series and the bounded variation of Power series. Proc. London Math. Soc. (2),35 (1933), p. 407-424. · Zbl 0007.16003 · doi:10.1112/plms/s2-35.1.407
[21] T. Takahashi: The absolute summability (A) of the conjugate Fourier series. Proc. Phys.-Math. Soc. of Japan (3),16 (1934), p. 236-243. · Zbl 0010.02003
[22] S. Verblunsky: The Cesàro summation of Trigonometric series. Proc. London Math. Soc. (2),33 (1931), p. 384-408. · Zbl 0004.10803 · doi:10.1112/plms/s2-33.1.384
[23] J. M. Whittaker: The absolute summability of Fourier series. Proc. Edinburgh Math. Soc. (2),2 (1930), p. 1-5. · JFM 56.0251.02 · doi:10.1017/S0013091500007483
[24] A. Zygmund: Sur un théorème de M. Gronwall. Bull. de l’Acad. Polonaise (Cracovie) A (1925), p. 207-217.
[25] M. Kuniyeda: On absolute summability (A) of allied series and derived series of Fourier series. Sci. Rep. Tokyo Bunrika Daigaku A2 (1934), p. 103-113. · Zbl 0011.20802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.