×

Metric spaces and positive definite functions. (English) Zbl 0019.41502


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932.
[2] Leonard M. Blumenthal, New theorems and methods in determinant theory, Duke Math. J. 2 (1936), no. 2, 396 – 404. · Zbl 0014.19603 · doi:10.1215/S0012-7094-36-00230-2
[3] S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932.
[4] S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann. 108 (1933), no. 1, 378 – 410 (German). · Zbl 0007.10803 · doi:10.1007/BF01452844
[5] S. Bochner, Stable laws of probability and completely monotone functions, Duke Math. J. 3 (1937), no. 4, 726 – 728. · doi:10.1215/S0012-7094-37-00360-0
[6] M. Fréchet, Les dimensions d’un ensemble abstrait, Mathematische Annalen, vol. 68 (1910), pp. 145-168.
[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934.
[8] J. von Neumann and I. J. Schoenberg, Fourier integrals and metric geometry, Trans. Amer. Math. Soc. 50 (1941), 226 – 251. · Zbl 0028.41002
[9] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Berlin, 1925.
[10] I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. (2) 38 (1937), no. 4, 787 – 793. · Zbl 0017.36101 · doi:10.2307/1968835
[11] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, Journal für die reine und angewandte Mathematik, vol. 140 (1911), pp. 1-28.
[12] W. A. Wilson, On Certain Types of Continuous Transformations of Metric Spaces, Amer. J. Math. 57 (1935), no. 1, 62 – 68. · Zbl 0010.37802 · doi:10.2307/2372019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.