×

zbMATH — the first resource for mathematics

A new class of orthogonal polynomials: The Bessel polynomials. (English) Zbl 0031.29701

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), no. 1, 730 – 736 (German). · JFM 55.0260.01
[2] Wolfgang Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935), no. 1, 634 – 638 (German). · Zbl 0011.06202
[3] H. L. Krall, Certain differential equations for Tchebycheff polynomials, Duke Math. J. 4 (1938), no. 4, 705 – 718. · Zbl 0020.02002
[4] H. L. Krall, On derivatives of orthogonal polynomials. II, Bull. Amer. Math. Soc. 47 (1941), 261 – 264. · JFM 67.0242.01
[5] J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. vol. 9 (1933) pp. 6-13. · JFM 60.0293.01
[6] P. M. Morse, Vibration and sound, New York, 1936.
[7] O. Perron, Die Lehre von den Kettenbrüchen, Leipzig, 1929. · JFM 55.0262.09
[8] G. Pólya, Sur l’indétermination d’un théorème voisin du problème des moments, C R. Acad. Sci. Paris vol. 207 (1938) pp. 708-711. · JFM 64.0408.02
[9] S. A. Schelkunoff, Electromagnetic waves, New York, 1943. · Zbl 0023.08103
[10] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. · Zbl 0063.06973
[11] J. A. Stratton, Electromagnetic theory, New York, 1941. · JFM 67.1119.01
[12] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications, vol. 23, 1939. · JFM 65.0278.03
[13] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. · Zbl 0063.08184
[14] R. P. Boas Jr., The Stieltjes moment problem for functions of bounded variation, Bull. Amer. Math. Soc. 45 (1939), no. 6, 399 – 404. · JFM 65.0518.05
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.