×

zbMATH — the first resource for mathematics

The group algebra of a locally compact group. (English) Zbl 0032.02901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ralph Palmer Agnew, Spans in Lebesgue and uniform spaces of translations of step functions, Bull. Amer. Math. Soc. 51 (1945), 229 – 233. · Zbl 0063.00024
[2] Ralph Palmer Agnew, Spans in Lebesgue and uniform spaces of translations of peak function, Amer. J. Math. 67 (1945), 431 – 436. · Zbl 0061.13312 · doi:10.2307/2371957 · doi.org
[3] Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364 – 386. · Zbl 0060.26906
[4] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionelle, Proceedings of the Ninth Scandinavian Mathematical Congress (1938), Helsingfors, 1939, pp. 345-366. · JFM 65.0483.02
[5] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839 – 873. · Zbl 0063.00692 · doi:10.2307/1968771 · doi.org
[6] R. H. Cameron and Norbert Wiener, Convergence properties of analytic functions of Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 46 (1939), 97 – 109. · Zbl 0021.32202
[7] F. Carlson, Une inégalité, Arkiv för matematik, astronomi och fysik vol. 25B (1934) pp. 1-5. · Zbl 0009.34202
[8] V. Ditkin, On the structure of ideals in certain normed rings, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 83 – 130 (Russian, with English summary). · Zbl 0061.24801
[9] Nelson Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323 – 392. · Zbl 0023.32902
[10] I. Gelfand, On normed rings, C. R. (Doklady) Acad. Sci. URSS. vol. 23 (1939) pp. 430-432. · JFM 65.1314.03
[11] I. Gelfand, To the theory of normed rings. II. On absolutely convergent trigonometrical series and integrals, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25 (1939), 570 – 572. · JFM 65.1315.01
[12] I. Gelfand, Ideale und primäre Ideale in normierten Ringen, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 41 – 48 (German, with Russian summary). · JFM 67.0406.03
[13] I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 3 – 24 (German, with Russian summary). · JFM 67.0406.02
[14] I. Gelfand, Über absolut konvergente trigonometrische Reihen und Integrale, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 51 – 66 (German, with Russian summary). · JFM 67.0409.03
[15] I. Gelfand and D. Raikov, On the theory of characters of commutative topological groups, C.R. (Doklady) Acad. Sci. URSS (N.S.) 28 (1940), 195 – 198. · Zbl 0024.12001
[16] I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups, C. R. (Doklady) Acad. Sci. URSS (N. S.) 42 (1944), 199 – 201. · Zbl 0061.25308
[17] I. Gelfand and G. Šilov, Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 25 – 39 (German, with Russian summary). · JFM 67.0407.01
[18] E. Hille, On Laplace integrals, Proceedings of the Eighth Scandinavian Mathematical Congress (1934), Lund, 1935, pp. 216-227. · JFM 61.1142.04
[19] Einar Hille and J. D. Tamarkin, On the characteristic values of linear integral equations, Acta Math. 57 (1931), no. 1, 1 – 76. · Zbl 0003.40001 · doi:10.1007/BF02403043 · doi.org
[20] -, Questions of relative inclusion in the domain of Hausdorff means, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 573-577. · Zbl 0007.11303
[21] -, On moment functions, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 902-908. · Zbl 0008.00903
[22] -, On the theory of Laplace integrals, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 908-912. · Zbl 0008.01103
[23] -, On the theory of Laplace integrals, II, Proc. Nat. Acad. Sci. U.S.A. vol. 20 (1934) pp. 140-144. · Zbl 0009.15807
[24] N. H. McCoy and Deane Montgomery, A representation of generalized Boolean rings, Duke Math. J. 3 (1937), no. 3, 455 – 459. · Zbl 0017.24402 · doi:10.1215/S0012-7094-37-00335-1 · doi.org
[25] F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116 – 229. · Zbl 0014.16101 · doi:10.2307/1968693 · doi.org
[26] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716 – 808. · Zbl 0060.26903 · doi:10.2307/1969107 · doi.org
[27] J. v. Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36 (1934), no. 3, 445 – 492. · JFM 60.0357.01
[28] F. Peter and H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), no. 1, 737 – 755 (German). · JFM 53.0387.02 · doi:10.1007/BF01447892 · doi.org
[29] H. R. Pitt, General Tauberian theorems. II, J. London Math. Soc. 15 (1940), 97 – 112. · JFM 66.0268.02 · doi:10.1112/jlms/s1-15.2.97 · doi.org
[30] N. Wiener and H. R. Pitt, On absolutely convergent Fourier-Stieltjes transforms, Duke Math. J. 4 (1938), no. 2, 420 – 436. · Zbl 0019.16803 · doi:10.1215/S0012-7094-38-00435-1 · doi.org
[31] I. E. Segal, The group ring of a locally compact group. I, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 348 – 352. · Zbl 0063.06858
[32] I. E. Segal, The span of the translations of a function in a Lebesgue space, Proc. Nat. Acad. Sci. U. S. A. 30 (1944), 165 – 169. · Zbl 0063.06859
[33] W. Stepanoff and A. Tychonoff, Sur les espaces des fonctions presque périodiques, C. R. Acad. Sci. Paris vol. 196 (1933) pp. 1199-1201. · Zbl 0006.42704
[34] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), no. 1, 37 – 111. · Zbl 0014.34002
[35] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375 – 481. · Zbl 0017.13502
[36] A. Weil, l’Integration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, no. 869, Paris, 1940. · Zbl 0063.08195
[37] Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1 – 100. · Zbl 0004.05905 · doi:10.2307/1968102 · doi.org
[38] -, The Fourier integral and certain of its applications, Cambridge, England, 1933.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.