×

Homology of spaces with operators. II. (English) Zbl 0034.11101


Keywords:

Topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Samuel Eilenberg, Extension and classification of continuous mappings, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 57 – 99. · Zbl 0063.09005
[2] Samuel Eilenberg, Homology of spaces with operators. I, Trans. Amer. Math. Soc. 61 (1947), 378 – 417; errata, 62, 548 (1947). · Zbl 0034.11001
[3] Samuel Eilenberg and Saunders MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231 – 294. · Zbl 0061.09204
[4] Samuel Eilenberg and Saunders MacLane, Determination of the second homology and cohomology groups of a space by means of homotopy invariants, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 277 – 280. · Zbl 0061.40707
[5] W. Franz, Ueber die Torsion einer Überdeckung, J. Reine Angew. Math. vol. 173 (1935) pp. 245-254.
[6] K. Reidemeister, Homotopieringe und Lensenräume, Abh. Math. Sem. Hansischen Univ. vol. 11 (1936) pp. 102-109.
[7] G. de Rham, Sur les nouveaux invariants topologiques de M. Reidemeister, Rec. Math. (Mat. Sbornik) vol. 43 (1936) pp. 737-743.
[8] Herbert Robbins, On the classification of the mappings of a 2-complex, Trans. Amer. Math. Soc. 49 (1941), 308 – 324. · Zbl 0024.36103
[9] P. A. Smith, Periodic and nearly periodic transformations, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 159 – 190. · Zbl 0063.07091
[10] Beno Eckmann, On complexes over a ring and restricted cohomology groups, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 275 – 281. · Zbl 0045.44102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.