×

La structure des \(p\)-groupes de Sylow des groupes symétriques finis. (French) Zbl 0034.30501


MSC:

20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure

Keywords:

Group theory

References:

[1] 1. A. KOUROCH , Théorie des groupes , Moscou, 1944 .
[2] 2. A. SPEISER , Die Theorie der Gruppen von endlicher Ordnung , 3 Aufl., Berlin, 1937 . Zbl 0017.15301 | JFM 63.0059.01 · Zbl 0017.15301
[3] 3. H. ZASSENHAUSS , Lehrbuch des Gruppentheorie , Berlin-Leipzig, 1937 . Zbl 0018.00901 | JFM 63.0058.03 · Zbl 0018.00901
[4] 4. PH. HALL , A contribution to the theorie of groups of prime power order (Proc. of London Math. Soc., 36, 1933 , p. 29-95). Zbl 0007.29102 | JFM 59.0147.02 · Zbl 0007.29102 · doi:10.1112/plms/s2-36.1.29
[5] 5. G. A. MILLER , Determination of all groups of order pm (Bull. of Amer. Math. Soc., Série 2, Vol. 8, 1902 , p. 391). JFM 33.0156.01 · JFM 33.0156.01
[6] 6. BRAHANA , On isomorphisms of abelian groups of type (1, ..., 1) (Amer. Journ., Vol. LVI, 1934 , p. 53-61). Zbl 0008.20103 | JFM 60.0086.01 · Zbl 0008.20103 · doi:10.2307/2370912
[7] 7. A. CHATELET , Les groupes abéliens finis , Paris-Lille, 1925 . JFM 51.0115.02 · JFM 51.0115.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.