×

zbMATH — the first resource for mathematics

Weak topology and nonlinear integral equations. (English) Zbl 0034.36502

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Leon Alaoglu, Weak topologies of normed linear spaces, Ann. of Math. (2) 41 (1940), 252 – 267. · Zbl 0023.12902 · doi:10.2307/1968829 · doi.org
[2] R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, 2d ed., Berlin, Springer, 1931. · Zbl 0001.00501
[3] M. Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme und allgemeinen Funktionalgleichungen. Math. Zeit. vol. 39 (1934) pp. 45-75. · JFM 60.0319.01
[4] -, Ueber Systeme von nichtlinearen Integralgleichungen, Publications Mathématiques de l’Université de Belgrade, vol. 5, 1936, pp. 52-83. · JFM 62.1253.01
[5] A. Hammerstein, Nichtlineare Integralgleichungen und direkte Methoden der Variationsrechnung, Sitzungsberichte der Berliner Mathematischen Gesellschaft vol. 26 (1927) pp. 66-70. · JFM 53.0355.01
[6] -, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. vol. 54 (1930) pp. 118-176.
[7] E. H. Rothe, Gradient mappings in Hilbert space, Ann. of Math. (2) 47 (1946), 580 – 592. · Zbl 0060.28203 · doi:10.2307/1969094 · doi.org
[8] E. H. Rothe, Completely continuous scalars and variational methods, Ann. of Math. (2) 49 (1948), 265 – 278. · Zbl 0031.21604 · doi:10.2307/1969277 · doi.org
[9] E. H. Rothe, Gradient mappings and extrema in Banach spaces, Duke Math. J. 15 (1948), 421 – 431. · Zbl 0030.26003
[10] Erhard Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen, Math. Ann. 63 (1907), no. 4, 433 – 476 (German). · JFM 38.0377.02 · doi:10.1007/BF01449770 · doi.org
[11] Erhard Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil, Math. Ann. 65 (1908), no. 3, 370 – 399 (German). · JFM 39.0399.03 · doi:10.1007/BF01456418 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.