×

zbMATH — the first resource for mathematics

A convex metric for a locally connected continuum. (English) Zbl 0035.10801

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gustav Beer, Beweis des Satzes, dass jede im kleinen zusammenhängende Kurve konvex metrisiert werden kann, Fund. Math. vol. 31 (1938) pp. 281-320. · Zbl 0020.40402
[2] R. H. Bing, Extending a metric, Duke Math. J. 14 (1947), 511 – 519. · Zbl 0030.08003
[3] Orville G. Harrold Jr., Concerning the Convexification of Continuous Curves, Amer. J. Math. 61 (1939), no. 1, 210 – 216. · Zbl 0020.07601 · doi:10.2307/2371400 · doi.org
[4] C. Kuratowski and G. T. Whyburn, Sur les éléments cycliques et leurs applications, Fund. Math. vol. 16 (1930) pp. 305-331. · JFM 56.1138.02
[5] Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75 – 163 (German). · JFM 54.0622.02 · doi:10.1007/BF01448840 · doi.org
[6] R. L. Wilder, On the imbedding of subsets of a metric space in Jordan continua, Fund. Math. vol. 19 (1932) pp. 45-64. · Zbl 0005.18302
[7] Leo Zippin, A study of continuous curves and their relation to the Janiszewski-Mullikin theorem, Trans. Amer. Math. Soc. 31 (1929), no. 4, 744 – 770. · JFM 55.0331.01
[8] Edwin E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111 – 1121. · Zbl 0036.11801
[9] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101 – 1110. · Zbl 0036.11702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.