×

zbMATH — the first resource for mathematics

Partitioning a set. (English) Zbl 0036.11702

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Bing, A convex metric for a locally connected continuum, Bull. Amer. Math. Soc. 55 (1949), 812 – 819. · Zbl 0035.10801
[2] R. H. Bing, Extending a metric, Duke Math. J. 14 (1947), 511 – 519. · Zbl 0030.08003
[3] Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75 – 163 (German). · JFM 54.0622.02 · doi:10.1007/BF01448840 · doi.org
[4] Edwin E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111 – 1121. · Zbl 0036.11801
[5] R. L. Moore, Concerning connectedness im kleinen and a related property, Fund. Math. vol. 3 (1922) pp. 232-237. · JFM 48.0659.03
[6] Wacław Sierpiński, Sur quelques propositions concernant la puissance du continu, Fund. Math. 38 (1951), 1 – 13 (French). · Zbl 0044.27301
[7] G. T. Whyburn, Concerning S-regions in locally connected continua, Fund. Math, vol. 20 (1933) pp. 131-139. · Zbl 0006.42701
[8] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.