×

zbMATH — the first resource for mathematics

Nonlinear integral equations of the Hammerstein type. (English) Zbl 0036.20202

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), no. 1, 117 – 176 (German). · JFM 56.0343.03 · doi:10.1007/BF02547519 · doi.org
[2] Rudolf Iglisch, Existenz- und Eindeutigkeitssätze bei nichtlinearen Integralgleichungen, Math. Ann. 108 (1933), no. 1, 161 – 189 (German). · Zbl 0006.31307 · doi:10.1007/BF01452830 · doi.org
[3] Rudolf Iglisch, Zur Theorie der Schwingungen, Monatsh. Math. Phys. 42 (1935), no. 1, 7 – 36 (German). 3. Mitteilung. · Zbl 0012.03802 · doi:10.1007/BF01733276 · doi.org
[4] Michael Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme und allgemeinen Funktionalgleichungen, Math. Z. 39 (1935), no. 1, 45 – 75 (German). · Zbl 0009.31204 · doi:10.1007/BF01201344 · doi.org
[5] Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45 – 78 (French). · Zbl 0009.07301
[6] L. Lusternik and L. Schnirelmann, Methodes topologiques dans les problemes variationnels, Actualités Scientifiques et Industrielles, vol. 188, 1934. · JFM 60.1228.04
[7] F. Smithies, Completely continuous transformations in Hilbert space, Bull. Amer. Math. Soc. 44 (1938), no. 12, 835 – 836. · JFM 64.0378.02
[8] T. H. Hildebrandt and Lawrence M. Graves, Implicit functions and their differentials in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 127 – 153. · JFM 53.0234.02
[9] Belva v. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Ergebnisse der Mathematik, Ann Arbor, Edwards Brothers, 1947. · JFM 68.0241.01
[10] C. L. Dolph, Non-linear integral equations of the Hammerstein type, Proc. Nat. Acad. Sci. U. S. A. 31 (1945), 60 – 65.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.