×

zbMATH — the first resource for mathematics

Measurable transformations. (English) Zbl 0036.35501

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Warren Ambrose, Change of velocities in a continuous ergodic flow, Duke Math. J. 8 (1941), 425 – 440. · Zbl 0063.00064
[2] Warren Ambrose, Representation of ergodic flows, Ann. of Math. (2) 42 (1941), 723 – 739. · Zbl 0025.26901 · doi:10.2307/1969259 · doi.org
[3] Warren Ambrose and Shizuo Kakutani, Structure and continuity of measurable flows, Duke Math. J. 9 (1942), 25 – 42. · Zbl 0063.00065
[4] Warren Ambrose, Paul R. Halmos, and Shizuo Kakutani, The decomposition of measures. II, Duke Math. J. 9 (1942), 43 – 47. · Zbl 0063.00066
[5] M. Bebutoff and W. Stepanoff, Sur le changement du temps dans les systèmes dynamiques possédant une mesure invariante, C. R. (Doklady) Acad. Sci. URSS (N. S.) 24 (1939), 217 – 219 (French). · Zbl 0021.41302
[6] M. Beboutoff and W. Stepanoff, Sur la mesure invariante dans les systèmes dynamiques qui ne diffèrent que par le temps, Rec. Math. [Mat. Sbornik] N.S. 7 (49) (1940), 143 – 166 (French). · JFM 66.0434.02
[7] G. D. Birkhoff and P. A. Smith, Structure analysis of surface transformations, J. Math. Pures Appl. vol. 7 (1928) pp. 345-379. · JFM 54.0604.03
[8] G. D. Birkhoff, Proof of a recurrence theorem for strongly transitive systems, Proc. Nat. Acad. Sci. U.S.A. vol. 17 (1931) pp. 650-655. · Zbl 0003.25601
[9] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. vol. 17 (1931) pp. 656-660. · Zbl 0003.25602
[10] G. D. Birkhoff and B. O. Koopman, Recent contributions to ergodic theory, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 279-282. · Zbl 0004.31102
[11] G. D. Birkhoff, Probability and physical systems, Bull. Amer. Math. Soc. vol. 38 (1932) pp. 361-379. · Zbl 0005.22201
[12] George D. Birkhoff, Some unsolved problems of theoretical dynamics, Science 94 (1941), 598 – 600. · Zbl 1225.70001 · doi:10.1126/science.94.2452.598 · doi.org
[13] G. D. Birkhoff, What is the ergodic theorem?, Amer. Math. Monthly 49 (1942), 222 – 226. · Zbl 0063.00410 · doi:10.2307/2303229 · doi.org
[14] G. D. Birkhoff, The ergodic theorems and their importance in statistical mechanics, Revista Ci., Lima 44 (1942), 251 (Spanish).
[15] N. Bogoliouboff and N. Kryloff, Les mesures invariantes et la transitivité, C. R. Acad. Sci. Paris vol. 201 (1935) pp. 1454-1456. · JFM 61.0473.01
[16] N. Bogoliouboff and N. Kryloff, Les mesures invariantes et transitives dans la mécanique non linéaire, Rec. Math. (Mat. Sbornik) N.S. vol. 1 (1936) pp. 707-711. · JFM 62.0994.02
[17] Nicolas Kryloff and Nicolas Bogoliouboff, La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), no. 1, 65 – 113 (French). · Zbl 0016.08604 · doi:10.2307/1968511 · doi.org
[18] C. Carathéodory, Über den Wiederkehrsatz von Poincaré, Sitzungsberichte der Preussischen Akademie der Wissenschaften vol. 32 (1919) pp. 580-584. · JFM 47.0718.04
[19] C. Carathéodory, Bemerkungen zum Riesz-Fixcherschen Satz und zur Ergodentheorie, Abh. Math. Sem. Hansischen Univ. 14 (1941), 351 – 389 (German). · Zbl 0025.06503
[20] C. Carathéodory, Bemerkungen zum Ergodensatz von G. Birkhoff, S.-B. Math.-Nat. Abt. Bayer. Akad. Wiss. 1944 (1947), 189 – 208 (German). · Zbl 0031.15701
[21] Jean Dieudonné, Sur le théorème de Lebesgue-Nikodym. III, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 25 – 53 (French). · Zbl 0030.16002
[22] J. L. Doob, Probability and statistics, Trans. Amer. Math. Soc. 36 (1934), no. 4, 759 – 775. · Zbl 0010.17303
[23] J. L. Doob, One-parameter families of transformations, Duke Math. J. 4 (1938), no. 4, 752 – 774. · JFM 64.0192.04 · doi:10.1215/S0012-7094-38-00466-1 · doi.org
[24] J. L. Doob, The law of large numbers for continuous stochastic processes, Duke Math. J. 6 (1940), 290 – 306. · JFM 66.0621.01
[25] J. L. Doob and R. A. Leibler, On the spectral analysis of a certain transformation, Amer. J. Math. 65 (1943), 263 – 272. · Zbl 0061.24903 · doi:10.2307/2371814 · doi.org
[26] Yael Naim Dowker, Invariant measure and the ergodic theorems, Duke Math. J. 14 (1947), 1051 – 1061. · Zbl 0029.14402
[27] Nelson Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185 – 217. · Zbl 0063.01185
[28] Nelson Dunford, Spectral theory, Bull. Amer. Math. Soc. 49 (1943), 637 – 651. · Zbl 0063.01184
[29] Nelson Dunford and D. S. Miller, On the ergodic theorem, Trans. Amer. Math. Soc. 60 (1946), 538 – 549. · Zbl 0063.01187
[30] Ky Fan, Les fonctions asymptotiquement presque-périodiques d’une variable entière et leur application à l’étude de l’itération des transformations continues, Math. Z. 48 (1943), 685 – 711 (French). · Zbl 0061.16302 · doi:10.1007/BF01180036 · doi.org
[31] S. Fomin, Finite invariant measures in the flows, Rec. Math. [Mat. Sbornik] N. S. 12(54) (1943), 99 – 108 (Russian, with English summary). · Zbl 0063.01405
[32] Maurice Fréchet, Sur le théorème ergodique de Birkhoff, C. R. Acad. Sci. Paris 213 (1941), 607 – 609 (French). · Zbl 0027.07704
[33] Maurice Fréchet, Sur le problème ergodique, Revue Sci. (Rev. Rose Illus.) 81 (1943), 155 – 157 (French). · Zbl 0028.29003
[34] Maurice Fréchet, Une application des fonctions asymptotiquement presque-périodiques á l’étude des familles de transformations ponctuelles et au problème ergodique, Revue Sci. (Rev. Rose Illus.) 79 (1941), 407 – 417 (French). · Zbl 0027.07703
[35] M. Fukamiya, On dominated ergodic theorems in \?_\?(\?\?1), Tôhoku Math. J. 46 (1939), 150 – 153. · Zbl 0022.15002
[36] Paul R. Halmos, The decomposition of measures, Duke Math. J. 8 (1941), 386 – 392. · Zbl 0025.14901
[37] Paul R. Halmos, Square roots of measure preserving transformations, Amer. J. Math. 64 (1942), 153 – 166. · Zbl 0063.01887 · doi:10.2307/2371675 · doi.org
[38] Paul R. Halmos and John von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332 – 350. · Zbl 0063.01888 · doi:10.2307/1968872 · doi.org
[39] Paul R. Halmos, On automorphisms of compact groups, Bull. Amer. Math. Soc. 49 (1943), 619 – 624. · Zbl 0061.04403
[40] Paul R. Halmos, Approximation theories for measure preserving transformations, Trans. Amer. Math. Soc. 55 (1944), 1 – 18. · Zbl 0063.01890
[41] Paul R. Halmos, In general a measure preserving transformation is mixing, Ann. of Math. (2) 45 (1944), 786 – 792. · Zbl 0063.01889 · doi:10.2307/1969304 · doi.org
[42] Paul R. Halmos, An ergodic theorem, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 156 – 161. · Zbl 0063.01892
[43] Paul R. Halmos, Invariant measures, Ann. of Math. (2) 48 (1947), 735 – 754. · Zbl 0029.35202 · doi:10.2307/1969138 · doi.org
[44] Paul R. Halmos, On a theorem of Dieudonné, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 38 – 42. · Zbl 0031.40701
[45] Paul R. Halmos, A nonhomogeneous ergodic theorem, Trans. Amer. Math. Soc. 66 (1949), 284 – 288. · Zbl 0036.20502
[46] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[47] Philip Hartman and Aurel Wintner, Asymptotic distributions and the ergodic theorem, Amer. J. Math. 61 (1939), 977 – 984. · Zbl 0022.15003 · doi:10.2307/2371642 · doi.org
[48] Philip Hartman and Aurel Wintner, Statistical independence and statistical equilibrium, Amer. J. Math. 62 (1940), 646 – 654. · Zbl 0024.14001 · doi:10.2307/2371474 · doi.org
[49] Philip Hartman and Aurel Wintner, Integrability in the large and dynamical stability, Amer. J. Math. 65 (1943), 273 – 278. · Zbl 0063.01952 · doi:10.2307/2371815 · doi.org
[50] Philip Hartman, On the ergodic theorems, Amer. J. Math. 69 (1947), 193 – 199. · Zbl 0034.06601 · doi:10.2307/2371847 · doi.org
[51] G. A. Hedlund, On the metrical transitivity of the geodesics on a surface of constant negative curvature, Proc. Nat. Acad. Sci. U.S.A. vol. 20 (1934) pp. 136-140. · Zbl 0009.37201
[52] Gustav A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2) 35 (1934), no. 4, 787 – 808. · Zbl 0010.22107 · doi:10.2307/1968495 · doi.org
[53] Gustav A. Hedlund, A Metrically Transitive Group Defined by the Modular Groups, Amer. J. Math. 57 (1935), no. 3, 668 – 678. · Zbl 0012.20301 · doi:10.2307/2371195 · doi.org
[54] G. A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. vol. 45 (1939) pp. 241-260. · JFM 65.0793.02
[55] Gustav A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2) 40 (1939), no. 2, 370 – 383. · Zbl 0020.40302 · doi:10.2307/1968925 · doi.org
[56] Gustav A. Hedlund, A new proof for a metrically transitive system, Amer. J. Math. 62 (1940), 233 – 242. · Zbl 0024.41702 · doi:10.2307/2371449 · doi.org
[57] Heinrich Hilmy, Sur le théorème ergodique, C. R. (Doklady) Acad. Sci. URSS (N. S.) 24 (1939), 213 – 216 (French). · Zbl 0021.41401
[58] Heinrich Hilmy, Sur la récurrence ergodique dans les systèmes dynamiques, Rec. Math. [Mat. Sbornik] N.S. 7(49) (1940), 101 – 109 (French, with Russian summary). · Zbl 0023.14601
[59] Eberhard Hopf, Zwei Sätze über den wahrscheinlichen Verlauf der Bewegungen dynamischer Systeme, Math. Ann. 103 (1930), no. 1, 710 – 719 (German). · JFM 56.0703.01 · doi:10.1007/BF01455716 · doi.org
[60] E. Hopf, On the time average theorem in dynamics, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 93-100. · Zbl 0004.31101
[61] E. Hopf, Über lineare Gruppen unitärer Operatoren im Zusammenhange mit den Bewegungen dynamischer Systeme, Sitzungsberichte der Preussischen Akademie der Wissenschaften vol. 14 (1932) pp. 182-190. · JFM 58.0837.03
[62] E. Hopf, Complete transitivity and the ergodic principle, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 204-209. · JFM 58.1272.03
[63] E. Hopf, Proof of Gibbs’ hypothesis on the tendency toward statistical equilibrium, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 333-340. · Zbl 0004.31202
[64] Eberhard Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), no. 2, 373 – 393. · Zbl 0004.26001
[65] E. Hopf, On causality, statistics, and probability, Journal of Mathematics and Physics vol. 13 (1934) pp. 51-102. · Zbl 0009.02703
[66] Eberhard Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), no. 2, 299 – 314. · Zbl 0014.08303
[67] E. Hopf, Ergodentheorie, Berlin, 1937. · JFM 63.0786.07
[68] E. Hopf, Statistische Probleme und Ergebnisse in der klassischen Mechanik, Actualités Scientifiques et Industrielles, no. 737, 1938, pp. 5-16. · JFM 64.0886.06
[69] E. Hopf, Beweis des Mischungscharakters der geodätischen Strömung auf Flächen der Krümmung minus Eins und endlicher Oberfläche, Sitzungsberichte der Preussischen Akademie der Wissenschaften (1938) pp. 333-344. · JFM 65.1412.01
[70] Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261 – 304 (German). · Zbl 0024.08003
[71] Eberhard Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940), 590 – 608 (German). · Zbl 0023.26801 · doi:10.1007/BF01450032 · doi.org
[72] Eberhard Hopf, Über eine Ungleichung der Ergodentheorie, S.-B. Math.-Nat. Abt. Bayer. Akad. Wiss. 1944 (1947), 171 – 176 (German). · Zbl 0031.15602
[73] Witold Hurewicz, Ergodic theorem without invariant measure, Ann. of Math. (2) 45 (1944), 192 – 206. · Zbl 0063.02944 · doi:10.2307/1969081 · doi.org
[74] Kiyosi Itô, On the ergodicity of a certain stationary process, Proc. Imp. Acad. tokyo 20 (1944), 54 – 55. · Zbl 0060.29002
[75] Shin-ichi Izumi, A non-homogeneous ergodic theorem, Proc. Imp. Acad., Tokyo 15 (1939), 189 – 192. · Zbl 0021.41301
[76] Shin-ichi Izumi, A remark on ergodic theorems, Proc. Imp. Acad. Tokyo 19 (1943), 102 – 104. · Zbl 0060.27306
[77] Børge Jessen, Abstract theory of measure and integration. IX, Mat. Tidsskr. B. 1947 (1947), 21 – 26 (Danish).
[78] Børge Jessen, Abstrakt Maal- og Integralkteori, Matematisk Forening i København, København, 1947 (Danish). · JFM 60.0977.02
[79] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002 – 1010. · Zbl 0032.41802
[80] Kôsaku Yosida and Shizuo Kakutani, Birkhoff’s ergodic theorem and the maximal ergodic theorem, Proc. Imp. Acad., Tokyo 15 (1939), 165 – 168. · Zbl 0021.41201
[81] Shizuo Kakutani, Representation of measurable flows in Euclidean 3-space, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 16 – 21. · Zbl 0063.03103
[82] Shizuo Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635 – 641. · Zbl 0060.27406
[83] Yukiyosi Kawada, Über die masstreuen Abbildungen vom Mischungstypus im weiteren Sinne, Proc. Imp. Acad. Tokyo 19 (1943), 520 – 524 (German). · Zbl 0060.27404
[84] Yukiyosi Kawada, Über die masstreuen Abbildungen in Produkträumen, Proc. Imp. Acad. Tokyo 19 (1943), 525 – 527 (German). · Zbl 0060.27405
[85] Yukiyosi Kawada, Über die Existenz der invarianten Integrale, Jap. J. Math. 19 (1944), 81 – 95 (German). · Zbl 0060.27304
[86] A. Khintchine, Zur mathematischen Begründung der statistischen Mechanik, Zeitschrift für Angewandte Mathematik und Mechanik, vol. 13 (1933) pp. 101-103. · Zbl 0006.41002
[87] A. Khintchine, The method of spectral reduction in classical dynamics, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 567-573. · JFM 59.1481.04
[88] A. Khintchine, Zu Birkhoffs Lösung des Ergodenproblems, Math. Ann. 107 (1933), no. 1, 485 – 488 (German). · JFM 58.1273.02 · doi:10.1007/BF01448905 · doi.org
[89] A. Khintchine, Fourierkoeffizienten längs einer Bahn im Phasenraum, Rec. Math. (Mat. Sbornik) vol. 41 (1934) pp. 14-15. · Zbl 0009.37903
[90] A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse, Math. Ann. 109 (1934), no. 1, 604 – 615 (German). · Zbl 0008.36806 · doi:10.1007/BF01449156 · doi.org
[91] A. Kolmogoroff, Ein vereinfachter Beweis des Birkhoff-Khintchineschen Ergodensatzes, Rec. Math. (Mat. Sbornik) N.S. vol. 2 (1937) pp. 366-368. · JFM 63.1075.03
[92] B. O. Koopman, Hamiltonian systems and transformations in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. vol. 17 (1931) pp. 315-318. · Zbl 0002.05701
[93] B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 255-263. · Zbl 0006.22702
[94] T. Levi-Civita, A general survey of the theory of adiabatic invariants, Journal of Mathematics and Physics vol. 13 (1934) pp. 18-40. · Zbl 0009.08907
[95] F. Maeda, Application of the theory of set functions to the mixing of fluids, Journal of Science of the Hirosima University. Ser. A vol. 5 (1935) pp. 1-6. · JFM 60.1389.04
[96] F. Maeda, Transitivities of conservative mechanism, Journal of Science of the Hirosima University. Ser. A vol. 6 (1936) pp. 1-18. · JFM 62.0994.03
[97] Dorothy Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 108 – 111. · Zbl 0063.03723
[98] Philip T. Maker, The ergodic theorem for a sequence of functions, Duke Math. J. 6 (1940), 27 – 30. · Zbl 0027.07705
[99] M. H. Martin, Metrically transitive point transformations, Bull. Amer. Math. Soc. vol. 40 (1934) pp. 606-612. · Zbl 0010.08403
[100] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 70-82. · JFM 58.1271.03
[101] J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. (2) 33 (1932), no. 3, 574 – 586 (German). · Zbl 0005.05603 · doi:10.2307/1968536 · doi.org
[102] J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. (2) 33 (1932), no. 3, 587 – 642 (German). · Zbl 0005.12203 · doi:10.2307/1968537 · doi.org
[103] J. von Neumann, Züsatze zur Arbeit ”zur Operatorenmethode...”, Ann. of Math. (2) 33 (1932), no. 4, 789 – 791 (German). · Zbl 0005.31504 · doi:10.2307/1968225 · doi.org
[104] J. C. Oxtoby, Note on transitive transformations, Proc. Nat. Acad. Sci. U.S.A. vol. 23 (1937) pp. 443-446. · Zbl 0017.13603
[105] J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560 – 566. · Zbl 0021.41202 · doi:10.2307/1968940 · doi.org
[106] J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874 – 920. · Zbl 0063.06074 · doi:10.2307/1968772 · doi.org
[107] John C. Oxtoby, On the ergodic theorem of Hurewicz, Ann. of Math. (2) 49 (1948), 872 – 884. · Zbl 0032.03101 · doi:10.2307/1969403 · doi.org
[108] H. R. Pitt, Some generalizations of the ergodic theorem, Proc. Cambridge Philos. Soc. 38 (1942), 325 – 343. · Zbl 0063.06266
[109] Hans Rademacher, Eineindeutige Abbildungen und Meßbarkeit, Monatsh. Math. Phys. 27 (1916), no. 1, 183 – 235 (German). · doi:10.1007/BF01726741 · doi.org
[110] Frédéric Riesz, Sur quelques problèmes de la théorie ergodique, Mat. Fiz. Lapok 49 (1942), 34 – 62 (Hungarian, with French summary). · Zbl 0027.40901
[111] Frédéric Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1945), 221 – 239 (French). · Zbl 0063.06500 · doi:10.1007/BF02566244 · doi.org
[112] V. Rohlin, On the classification of measurable decompositions, Doklady Akad. Nauk SSSR (N. S.) 58 (1947), 29 – 32 (Russian).
[113] V. Rohlin, On the problem of the classification of automorphisms of Lebesgue spaces, Doklady Akad. Nauk SSSR (N. S.) 58 (1947), 189 – 191 (Russian).
[114] V. Rohlin, A ”general” measure-preserving transformation is not mixing, Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 349 – 351 (Russian).
[115] V. Rohlin, Unitary rings, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 643 – 646 (Russian).
[116] G. Scorza Dragoni, Sul teorema ergodico, Rend. Circ. Mat. Palermo vol. 58 (1934) pp. 311-325. · Zbl 0011.37304
[117] G. Scorza Dragoni, Transitivita metrica e teoremi di media, Rend. Circ. Mat. Palermo vol. 59 (1935) pp. 235-255. · Zbl 0013.32504
[118] G. Scorza Dragoni, Sul fondamento matematico della teoria degli invarianti adiabatici, Annali di Mathematica Pura ed Applicata vol. 13 (1935) pp. 335-362. · JFM 61.0473.02
[119] W. Seidel, Note on a metrically transitive system, Proc. Nat. Acad. Sci. U.S.A. vol. 19 (1933) pp. 453-456. · Zbl 0007.10406
[120] W. Seidel, On a metric property of Fuchsian groups, Proc. Nat. Acad. Sci. U.S.A. vol. 21 (1935) pp. 475-478. · Zbl 0012.15501
[121] W. Stepanoff, Sur une extension du théorème ergodique, Compositio Math. 3 (1936), 239 – 253 (French). · Zbl 0014.41804
[122] Masatsugu Tsuji, On Hopf’s ergodic theorem, Proc. Imp. Acad. Tokyo 20 (1944), 640 – 647. · Zbl 0060.27307
[123] Masatsugu Tsuji, Some metrical theorems on Fuchsian groups, Proc. Imp. Acad. Tokyo 21 (1945), 104 – 109. · Zbl 0060.27401
[124] Masatsugu Tsuji, On Hopf’s ergodic theorem, Jap. J. Math. 19 (1945), 259 – 284. · Zbl 0060.27402
[125] C. Visser, On Poincaré’s recurrence theorem, Bull. Amer. Math. Soc. vol. 42 (1936) pp. 397-400. · JFM 62.0243.03
[126] Norbert Wiener, The Homogeneous Chaos, Amer. J. Math. 60 (1938), no. 4, 897 – 936. · Zbl 0019.35406 · doi:10.2307/2371268 · doi.org
[127] Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1 – 18. · Zbl 0021.23501 · doi:10.1215/S0012-7094-39-00501-6 · doi.org
[128] Norbert Wiener and Aurel Wintner, Harmonic analysis and ergodic theory, Amer. J. Math. 63 (1941), 415 – 426. · Zbl 0025.06504 · doi:10.2307/2371534 · doi.org
[129] Norbert Wiener and Aurel Wintner, On the ergodic dynamics of almost periodic systems, Amer. J. Math. 63 (1941), 794 – 824. · Zbl 0026.13102 · doi:10.2307/2371623 · doi.org
[130] Norbert Wiener and Aurel Wintner, The discrete chaos, Amer. J. Math. 65 (1943), 279 – 298. · Zbl 0063.08250 · doi:10.2307/2371816 · doi.org
[131] A. Wintner, Remarks on the ergodic theorem of Birkhoff, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 248-251. · Zbl 0004.31203
[132] Aurel Wintner, Dynamische Systeme und unitäre Matrizen, Math. Z. 36 (1933), no. 1, 630 – 637 (German). · Zbl 0006.22701 · doi:10.1007/BF01188638 · doi.org
[133] Aurel Wintner, On an ergodic analysis of the remainder term of mean motions, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 126 – 129. · Zbl 0023.12001
[134] Kôsaku Yosida, Ergodic theorems of Birkhoff-Khintchine’s type, Jap. J. Math. 17 (1940), 31 – 36. · JFM 66.0560.01
[135] Kôsaku Yosida, An abstract treatment of the individual ergodic theorem, Proc. Imp. Acad. Tokyo 16 (1940), 280 – 284. · JFM 66.0559.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.