×

zbMATH — the first resource for mathematics

Multiplicative Riemann integration in normed rings. (English) Zbl 0037.03802

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach Théorie des opérations linéaires, Warsaw, 1932. · JFM 58.0420.01
[2] Garrett Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2, 357 – 378. · JFM 61.0234.01
[3] -On product integration, Journal of Mathematics and Physics (Massachusetts Institute of Technology) vol. 16 (1937) pp. 104-132. · JFM 63.1001.03
[4] -Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, New York, 1940.
[5] G. D. Birkhoff and R. E. Langer The boundary problems and developments associated with a system of ordinary linear differential equations of the first order, Proceedings of the American Academy of Arts and Sciences vol. 58 (1923) pp. 49-128. · JFM 49.0723.01
[6] T. Bromwich An introduction to the theory of infinite series, London, 1931. · Zbl 0004.00705
[7] M. Frechét Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo vol. 22 (1906) pp. 1-74. · JFM 37.0348.02
[8] I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 3 – 24 (German, with Russian summary). · JFM 67.0406.02
[9] E. Goursat A course of mathematical analysis, vol. 1 (translation by E. R. Hedrick), Boston, 1917. · JFM 46.0695.08
[10] Lawrence M. Graves, Riemann integration and Taylor’s theorem in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 163 – 177. · JFM 53.0234.03
[11] E. W. Hobson The theory of functions of a real variable, vol. 1, Cambridge, 1927. · JFM 53.0226.01
[12] E. H. Moore and H. L. Smith, A General Theory of Limits, Amer. J. Math. 44 (1922), no. 2, 102 – 121. · JFM 48.1254.01 · doi:10.2307/2370388 · doi.org
[13] G. Peano, Intégration par séries des équations différentielles linéaires, Math. Ann. 32 (1888), no. 3, 450 – 456 (French). · JFM 20.0329.02 · doi:10.1007/BF01443609 · doi.org
[14] G. Rasch Zur Theorie und Anwendung des Productintegrals, J. Reine Angew. Math. vol. 171 (1934) pp. 65-119. · Zbl 0009.16503
[15] Ludwig Schlesinger, Neue Grundlagen für einen Infinitesimalkalkul der Matrizen, Math. Z. 33 (1931), no. 1, 33 – 61 (German). · Zbl 0001.01503 · doi:10.1007/BF01174342 · doi.org
[16] Ludwig Schlesinger, Weitere Beiträge zum Infinitesimalkalkul der Matrizen, Math. Z. 35 (1932), no. 1, 485 – 501 (German). · Zbl 0004.24701 · doi:10.1007/BF01186565 · doi.org
[17] V. Volterra Sulle equazioni differzeniali lineari, Rendiconto Accademia dei Lincei vol. 3 (1887) pp. 393-396. · JFM 19.0303.01
[18] 3. -Sui fondamenti della teoria della equazioni differenziali, Memorie Sociètà Italiana delle scienze (3) vol. 6 (1887) p. 6; (3) vol. 12 (1902) pp. 3-68.
[19] V. Volterra and B. Hostinsky Opérations infinitésimales linéaires, Paris, 1938. · JFM 64.1112.04
[20] J. v. Neumann, Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer Darstellungen, Math. Z. 30 (1929), no. 1, 3 – 42 (German). · JFM 55.0245.05 · doi:10.1007/BF01187749 · doi.org
[21] J. H. M. Wedderburn, The absolute value of the product of two matrices, Bull. Amer. Math. Soc. 31 (1925), no. 7, 304 – 308. · JFM 51.0081.03
[22] K. Yosida On the group embedded in a metrical complete ring, Jap. J. Math. vol. 13 (1936) pp. 7-26. · Zbl 0015.24402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.