×

Self-dual configurations and regular graphs. (English) Zbl 0040.22803


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. F. Baker, Principles of geometry, vol. 1, 2d ed., Cambridge, 1929.1a. H. F. Baker, ibid, vol. 3, Cambridge, 1934.
[2] H. F. Baker, Note to the preceding paper by C. V. H. Rao, Proc. Cambridge Philos. Soc. 42 (1946), 226 – 229. · Zbl 0061.31003
[3] Gaston Benneton, Configurations harmoniques et quaternions, Ann. Sci. École Norm. Sup. (3) 64 (1947), 1 – 58 (French). · Zbl 0033.20402
[4] Wilhelm Blaschke, Projektive Geometrie, Wolfenbütteler Verlagsanstalt, Wolfenbüttel-Hannover, 1947 (German). · Zbl 0030.06205
[5] W. Blaschke and G. Bol, Geometrie der Gewebe, Berlin, 1938.
[6] R. C. Bose, An affine analogue of Singer’s theorem, J. Indian Math. Soc. (N.S.) 6 (1942), 1 – 15. · Zbl 0063.00542
[7] H. R. Brahana, Regular Maps and Their Groups, Amer. J. Math. 49 (1927), no. 2, 268 – 284. · doi:10.2307/2370756
[8] W. Burnside, Theory of groups of finite order, Dover Publications, Inc., New York, 1955. 2d ed. · Zbl 0064.25105
[9] A. Cayley, Sur quelques théorèmes de la géométrie de position(1846), Collected Mathematical Papers, vol. 1, 1889, pp. 317-328.
[10] H. Cox, Application of Grassmann’s Ausdehnungslehre to properties of circles, Quart. J. Math. vol. 25 (1891) pp. 1-71.
[11] H. S. M. Coxeter, Regular skew polyhedra in three and four dimensions, Proc. London Math. Soc. (2) vol. 43 (1937) pp. 33-62. · Zbl 0016.27101
[12] H. S. M. Coxeter, Regular polytopes, London, 1948. · Zbl 0031.06502
[13] H. S. M. Coxeter, Configurations and maps, Rep. Math. Colloquium (2) 8 (1949), 18 – 38.
[14] H. S. M. Coxeter, The Real Projective Plane, McGraw-Hill Book Company, Inc., New York, N. Y., 1949. · Zbl 0032.11302
[15] L. Cremona, Teoremi stereometrici, dei quali si deducono le proprietà dell’esagrammo di Pascal, Memorie della Reale Accademia dei Lincei vol. 1 (1877) pp. 854-874.
[16] P. Du Val, On the directrices of a set of points in a plane, Proc. London Math. Soc. (2) vol. 35 (1933) pp. 23-74. · Zbl 0006.17703
[17] J. M. Feld, Configurations Inscriptible in a Plane Cubic Curve, Amer. Math. Monthly 43 (1936), no. 9, 549 – 555. · Zbl 0015.26703 · doi:10.2307/2301402
[18] R. M. Foster, Geometrical circuits of electrical networks, Transactions of the American Institute of Electrical Engineers vol. 51 (1932) pp. 309-317.
[19] R. Frucht, Die Gruppe des Petersen’schen Graphen und der Kantensysteme der regulären Polyeder, Comment. Math. Helv. vol. 9 (1937) pp. 217-223. · Zbl 0016.37601
[20] G. Gallucci, Studio della figura delle otto rette e sue applicazioni alla geometria del tetraedro ed alla teoria della configurazioni, Rendiconto dell’Accademia delle Scienze fisiche e matematiche (Sezione della Società reale di Napoli) (3) vol. 12 (1906) pp. 49-79.
[21] P. J. Heawood, Map-colour theorem, Quart. J. Math. vol. 24 (1890) pp. 332-338.
[22] L. Henneberg, Die graphische Statik der starren Körper, Encyklopädie der Mathematischen Wissenschaften vol. 4.1 (1908) pp. 345-434.
[23] E. Hess, Weitere Beiträge zur Theorie der räumlichen Configurationen, Verhandlungen den K. Leopoldinisch-Carolinischen Deutschen Akademie Naturforscher vol. 75 (1899) pp. 1-482.
[24] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry. Vol. I, Cambridge, at the University Press; New York, The Macmillan Company, 1947. · Zbl 0055.38705
[25] R. W. H. T. Hudson, Kummer’s quartic surface, Cambridge, 1905. · Zbl 0716.14025
[26] S. Kantor, Über die Configurationen (3, 3) mit den Indices 8, 9 und ihren Zusammenhang mit den Curven dritter Ordnung, Sitzungsberichte der Mathematisch-Naturwissenschaftliche Classe der K. Akademie der Wissenschaften, Wien vol. 84.1 (1882) pp. 915-932.
[27] S. Kantor, Die Configurationen (3, 3)10, ibid. pp. 1291-1314.
[28] D. König, Theorie der endlichen und unendlichen Graphen, Leipzig, 1936.
[29] Karl Kommerell, Die Pascalsche Konfiguration 9\(_{3}\), Deutsche Math. 6 (1941), 16 – 32 (German). · Zbl 0026.34202
[30] A. Kowalewski, W. R. Hamilton’s Dodekaederaufgabe als Buntordnungsproblem, Sitzungsberichte der Mathematisch-Naturwissenschaftliche Klasse der K. Akademie der Wissenschaften, Wien vol. 126.2a (1917) pp. 67-90.
[31] F. W. Levi, Geometrische Konfigurationen, Leipzig, 1929.
[32] F. W. Levi, Finite Geometrical Systems, University of Calcutta, Calcutta, 1942. · Zbl 0060.32304
[33] V. Martinetti, Sopra alcune configurazioni piane, Annali di Matematica (2) vol. 14 (1887) pp. 161-192.33a. V. Martinetti, Sulle configurazioni piane \mu , Annali di Matematica (2) vol. 15 (1888) pp. 1-26.
[34] V. Martinetti, Alcune considerazioni sulla configurazione di Kummer, Rend. Circ. Mat. Palermo vol. 16 (1902) pp. 196-203.
[35] G. A. Miller, H. F. Blichfeldt, and L. E. Dickson, Theory and applications of finite groups, New York, 1916.
[36] A. F. Möbius, Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heissen? (1828), Gesammelte Werke, vol. 1, 1886, pp. 439-446.
[37] F. Morley and F. V. Morley, Inversive geometry, Boston, 1933. · Zbl 0009.02908
[38] J. Petersen, Les 36 officiers, Annuaire des Mathématiciens (1902) pp. 413-427.
[39] Herbert W. Richmond, On a chain of theorems due to Homersham Cox, J. London Math. Soc. 16 (1941), 105 – 107. · Zbl 0028.29901 · doi:10.1112/jlms/s1-16.2.105
[40] G. de B. Robinson, On the orthogonal groups in four dimensions, Proc. Cambridge Philos. Soc. vol. 27 (1931) pp. 37-48. · Zbl 0001.16001
[41] A. Schönflies, Ueber die regelmässigen Configurationen \?³, Math. Ann. 31 (1888), no. 1, 43 – 69 (German). · doi:10.1007/BF01204635
[42] James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), no. 3, 377 – 385. · Zbl 0019.00502
[43] D. M. Y. Sommerville, An introduction to the geometry of n dimensions, London, 1929.
[44] G. K. C. von Staudt, Geometrie der Lage, Nürnberg, 1847.
[45] C. Stephanos, Sur les systèmes desmiques de trois tétraèdres, Bull. Sci. Math. (2) vol. 3 (1879) pp. 424-456.
[46] W. Threlfall, Gruppenbilder, Abhandlungen der Mathematisch-Physischen Klasse der Sächsischen Akademie der Wissenschaften vol. 41.6 (1932) pp. 1-59.
[47] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459 – 474. · Zbl 0029.42401
[48] Oswald Veblen, Collineations in a finite projective geometry, Trans. Amer. Math. Soc. 8 (1907), no. 3, 366 – 368.
[49] O. Veblen and J. W. Young, Projective geometry, vol. 1, Boston, 1910.
[50] H. Whitney, Planar graphs, Fund. Math. vol. 21 (1933) pp. 73-84. · Zbl 0008.08501
[51] Max Zacharias, Untersuchungen über ebene Konfigurationen (12\(_{4}\),16\(_{3}\)), Deutsche Math. 6 (1941), 147 – 170 (German). · Zbl 0026.14502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.