×

zbMATH — the first resource for mathematics

On factorisation of graphs. (English) Zbl 0040.25901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] These concepts will be used here only in the combinatorial sense.
[2] D. König, Theorie der endlichen und unendlichen Graphen, Akad. Verl. Leipzig (1936), pp. 155–159.
[3] J. Petersen, Die Theorie der regulären Graphs,Acta Math.,15 (1891), pp. 193–220. · JFM 23.0115.03
[4] F. Baebler, Über die Zerlegung regulärer Streckenkomplexe ungerader Ordnung,Comment. Math. Helvetici,10 (1938), pp. 275–287. · JFM 64.0596.01
[5] W. T. Tutte, The factorization of linear graphs,Journ. London Math. Soc.,22 (1947), pp. 107–111. · Zbl 0029.23301
[6] Loc. cit. 2, pp. 170–175. A graph is said to be ofeven circuit, or, simplyeven, if it has no circle with an odd number of edges.
[7] P. Hall, On representations of subsets,Journ. London Math. Soc. 10 (1934), pp. 26–30. · Zbl 0010.34503
[8] R. Rado, Factorization of even graphs,Quart. Journ. Math. (Oxford series),20 (1949), pp. 95–104. · Zbl 0032.31601
[9] D. König undS. Valkó, Über mehrdeutige Abbildungen von Mengen,Math. Annalen,95 (1926), pp. 135–138. · JFM 51.0165.01
[10] D. König, loc. cit. 2, pp. 203–205.
[11] W. T. Tutte, The factorisation of locally finite graphs,Canadian Journ. Math.,2 (1950), pp. 44–49. · Zbl 0036.39104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.