×

An extension theory for a certain class of loops. (English) Zbl 0043.02002


Keywords:

group theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. A. Albert, Quasigroups. I, Trans. Amer. Math. Soc. 54 (1943), 507 – 519. · Zbl 0063.00039
[2] A. A. Albert, Quasigroups. II, Trans. Amer. Math. Soc. 55 (1944), 401 – 419. · Zbl 0063.00042
[3] Reinhold Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), no. 1, 375 – 416 (German). · Zbl 0009.01101
[4] Reinhold Baer, Representations of groups as quotient groups. II. Minimal central chains of a group, Trans. Amer. Math. Soc. 58 (1945), 348 – 389. · Zbl 0061.02703
[5] Grace E. Bates, Free loops and nets and their generalizations, Amer. J. Math. 69 (1947), 499 – 550. · Zbl 0035.01202
[6] R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245 – 354. · Zbl 0061.02201
[7] R. H. Bruck, On a theorem of R. Moufang, Proc. Amer. Math. Soc. 2 (1951), 144 – 145. · Zbl 0042.25302
[8] Marshall Hall, Group rings and extensions. I, Ann. of Math. (2) 39 (1938), no. 1, 220 – 234. · Zbl 0018.14506
[9] Sammuel Eilenberg, Topological methods in abstract algebra. Cohomology theory of groups, Bull. Amer. Math. Soc. 55 (1949), 3 – 37. · Zbl 0031.34202
[10] Samuel Eilenberg and Saunders MacLane, Cohomology theory in abstract groups. I, Ann. of Math. (2) 48 (1947), 51 – 78. · Zbl 0029.34001
[11] Samuel Eilenberg and Saunders MacLane, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel, Ann. of Math. (2) 48 (1947), 326 – 341. · Zbl 0029.34101
[12] Samuel Eilenberg and Saunders MacLane, Algebraic cohomology groups and loops, Duke Math. J. 14 (1947), 435 – 463. · Zbl 0029.34102
[13] Ruth Moufang, Zur Struktur von Alternativkörpern, Math. Ann. 110 (1935), no. 1, 416 – 430 (German). · Zbl 0010.00403
[14] Hans Zassenhaus, The Theory of Groups, Chelsea Publishing Company, New York, N. Y., 1949. Translated from the German by Saul Kravetz. · Zbl 0041.00704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.