×

zbMATH — the first resource for mathematics

Topologies on spaces of subsets. (English) Zbl 0043.37902

Keywords:
Topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre III. Topologie générale. Chapitres I et II, Actual. Sci. Ind., no. 858, Hermann & Cie., Paris, 1940 (French). · Zbl 0030.24102
[2] -, Topologie generale, Paris, Hermann, 1942, chaps. 3 and 4.
[3] -, Topologie generale, Paris, Hermann 1948, chap. 9.
[4] Robert Brisac, Sur les fonctions multiformes, C. R. Acad. Sci. Paris 224 (1947), 92 – 94 (French). · Zbl 0029.32102
[5] G. Choquet, Convergences, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 57 – 112. · Zbl 0031.28101
[6] Samuel Eilenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), 39 – 45. · Zbl 0024.19203
[7] Orrin Frink Jr., Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569 – 582. · Zbl 0061.39305
[8] David Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303 – 308. · Zbl 0037.35501
[9] H. Hahn, Reele Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1932.
[10] F. Hausdorff, Mengenlehre, 3d ed., Springer, Berlin, 1927. · JFM 53.0169.01
[11] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22 – 36. · Zbl 0061.40107
[12] C. Kuratowski, Topologie I, Monografje Matematiczne, Warsaw, 1933. · JFM 59.0563.02
[13] -, Les fonctions semi-continues dans l’espace des ensembles fermes, Fund. Math. vol. 18 (1932) pp. 148-160. · Zbl 0004.20401
[14] Leopold Vietoris, Kontinua zweiter Ordnung, Monatsh. Math. Phys. 33 (1923), no. 1, 49 – 62 (German). · JFM 49.0141.02
[15] -, Kontinua zweiler Ordnung, Monatshefte für Mathematik und Physik vol. 33 (1923) pp. 49-62.
[16] A. Weil, Sur les espace a structure uniforme et sur la topologie generale, Paris, Hermann, 1937. · JFM 63.0569.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.