×

zbMATH — the first resource for mathematics

The asymptotic density of sequences. (English) Zbl 0044.03603

Keywords:
number theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Emil Artin and Peter Scherk, On the sum of two sets of integers, Ann. of Math. (2) 44 (1943), 138 – 142. · Zbl 0061.07407 · doi:10.2307/1968760 · doi.org
[2] F. Behrend, Über numeri abundantes I, II, Preuss. Akad. Wiss. Sitzungsber. no. 21/23 (1932) pp. 322-328, no. 6 (1933) pp. 280-293. · JFM 59.0169.05
[3] F. Behrend, On sequences of numbers not divisible one by another, J. London Math. Soc. vol. 10 (1935) pp. 42-44. · JFM 61.0132.01
[4] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331 – 332. · Zbl 0060.10302
[5] A. S. Besicovitch, On the density of certain sequences of integers, Math. Ann. 110 (1935), no. 1, 336 – 341. · Zbl 0009.39504 · doi:10.1007/BF01448032 · doi.org
[6] A. S. Besicovitch, On the density of the sum of two sequences of integers, J. London Math. Soc. vol. 10 (1935) pp. 246-248. · Zbl 0012.39406
[7] R. Creighton Buck, The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560 – 580. · Zbl 0061.07503 · doi:10.2307/2371785 · doi.org
[8] Ellen F. Buck and R. C. Buck, A note on finitely-additive measures, Amer. J. Math. 69 (1947), 413 – 420. · Zbl 0035.31103 · doi:10.2307/2371862 · doi.org
[9] L. P.-H. Cheo, A remark on the \alpha +\beta theorem, to appear in Proceedings of the American Mathematical Society. · Zbl 0046.27103
[10] Luther Cheo, On the density of sets of Gaussian integers, Amer. Math. Monthly 58 (1951), 618 – 620. · Zbl 0044.03602 · doi:10.2307/2306357 · doi.org
[11] S. Chowla, A generalization of Meyer’s theorem on indefinite quadratic forms in five or more variables, J. Indian Math. Soc. (N.S.) 25 (1961), 41. · Zbl 0102.28004
[12] S. D. Chowla and John Todd, The density of reducible integers, Canadian J. Math. 1 (1949), 297 – 299. · Zbl 0039.03603
[13] J. G. van der Corput, On sets of integers. I, II, Nederl. Akad. Wetensch., Proc. 50 (1947), 252 – 261, 340 – 350 = Indagationes Math. 9, 159 – 168, 198 – 208 (1947). · Zbl 0030.01602
[14] J. G. van der Corput, On de Polignac’s conjecture, Simon Stevin 27 (1950), 99 – 105 (Dutch). · Zbl 0037.16901
[15] H. Davenport, Über numeri abundantes, Preuss. Akad. Wiss. Sitzungsber no. 26/29 (1933) pp. 830-837. · JFM 59.0948.04
[16] H. Davenport and P. Erdös, On sequences of positive integers, Acta Arithmetica vol. 2 (1936) pp. 147-151. · JFM 62.1130.03
[17] H. Davenport and H. Heilbronn, Note on a result in the additive theory of numbers, Proc. London Math. Soc. (2) vol. 43 (1937) pp. 142-151. · Zbl 0016.34806
[18] F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20 (1945), 8 – 14. · Zbl 0061.07408 · doi:10.1112/jlms/s1-20.1.8 · doi.org
[19] P. Erdös, On the density of the abundant numbers, J. London Math. Soc. vol. 9 (1934) pp. 278-282. · JFM 60.0148.02
[20] P. Erdös, On the density of some sequences of integers I, II, J. London Math. Soc. vol. 10 (1935) pp. 120-125; vol. 12 (1937) pp. 7-11. · JFM 61.0131.01
[21] P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. vol. 10 (1935) pp. 126-128. · JFM 61.0132.02
[22] P. Erdös, On the arithmetical density of the sum of two sequences one of which forms a basis for the integers, Acta Arithmetica vol. 1 (1936) pp. 197-200. · JFM 62.0152.01
[23] P. Erdös, On a problem of Chowla and some related problems, Proc. Cambridge Philos. Soc. vol. 32 (1936) pp. 530-540. · JFM 62.1149.02
[24] P. Erdös, A generalization of a theorem of Besicovitch, J. London Math. Soc. vol. 11 (1936) pp. 92-98. · JFM 62.0154.01
[25] P. Erdös, On the easier Waring problem for powers of primes I, Proc. Cambridge Philos. Soc. vol. 33 (1937) pp. 6-12. · JFM 63.0134.01
[26] P. Erdös, On the asymptotic density of the sum of two sequences one of which forms a basis for the integers II, Travaux de l’Institut Mathématique de Tblissi vol. 3 (1938) pp. 217-224. · JFM 64.0135.02
[27] P. Erdös, On the asymptotic density of the sum of two sequences, Ann. of Math. (2) 43 (1942), 65 – 68. · JFM 68.0078.01 · doi:10.2307/1968880 · doi.org
[28] P. Erdös, On the density of some sequences of integers, Bull. Amer. Math. Soc. 54 (1948), 685 – 692. · Zbl 0032.01301
[29] P. Erdös, Some asymptotic formulas in number theory, J. Indian Math. Soc. (N.S.) 12 (1948), 75 – 78. · Zbl 0041.36807
[30] Paul Erdös and Ivan Niven, The \?+\? hypothesis and related problems, Amer. Math. Monthly 53 (1946), 314 – 317. · doi:10.2307/2305501 · doi.org
[31] P. Erdös and P. Turán, On some sequences of integers, J. London Math. Soc. vol. 11 (1936) pp. 261-264. · JFM 62.1126.01
[32] Willy Feller and Erhard Tornier, Mengentheoretische Untersuchung von Eigenschaften der Zahlenreihe, Math. Ann. 107 (1933), no. 1, 188 – 232 (German). · Zbl 0005.19902 · doi:10.1007/BF01448890 · doi.org
[33] E. Fogels, Zur arithmetik quadratischer Zahlenkörper, Univ. Riga. Wiss. Abh. Kl. Math. Abt. 1 (1943), 23 – 47 (German, with Latvian summary). · Zbl 0061.05804
[34] H. Heilbronn, On an inequality in the elementary theory of numbers, Proc. Cambridge Philos. Soc. vol. 33 (1937) pp. 207-209. · Zbl 0016.29002
[35] M. Kac, Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc. 55 (1949), 641 – 665. · Zbl 0036.30502
[36] A. Khintchine, Zur additiven Zahlentheorie, Rec. Math. (Mat. Sbornik) vol. 39 (1932) pp. 27-34. · JFM 58.0159.07
[37] E. Landau, Verschärfung eines Romanoffschen Satzes, Acta Arithmetica vol. 1 (1935) pp. 43-61. · JFM 61.0156.01
[38] E. Landau, Über eine neuere Fortschritte der additiven Zahlentheorie, Cambridge Tract no. 35, 1937. · Zbl 0016.20201
[39] Benjamin Lepson, Certain best possible results in the theory of Schnirelmann density, Proc. Amer. Math. Soc. 1 (1950), 592 – 594. · Zbl 0040.16201
[40] U. V. Linnik, On Erdös’s theorem on the addition of numerical sequences, Rec. Math. [Mat. Sbornik] N.S. 10(52) (1942), 67 – 78 (English, with Russian summary). · Zbl 0063.03574
[41] Henry B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. (2) 43 (1942), 523 – 527. · Zbl 0061.07406 · doi:10.2307/1968807 · doi.org
[42] Henry B. Mann, On the number of integers in the sum of two sets of positive integers, Pacific J. Math. 1 (1951), 249 – 253. · Zbl 0045.01904
[43] L. Mirsky, A property of square-free integers, J. Indian Math. Soc. (N.S.) 13 (1949), 1 – 3. · Zbl 0034.02302
[44] L. Moser, On sets of integers which contain no three in arithmetical progression Part I of Ph.D. dissertation, University of North Carolina, 1950.
[45] I. Niven, A binary operation on sets of positive integers, Bull. Amer. Math. Soc. Abstract 56-5-415.
[46] I. Niven, Sets of integers of density zero, Proceedings of the International Congress, Cambridge, 1950.
[47] Hans-Heinrich Ostmann, Beweis einer Vermutung über die asymptotische Dichte und Verschärfung einer Abschätzung für die Dichte der Summe zweier Zahlenmengen, Deutsche Math. 6 (1941), 213 – 247 (German). · Zbl 0026.20204
[48] Hans-Heinrich Ostmann, Über die Dichten additiv komponierter Zahlenmengen, Arch. Math. 1 (1949), 393 – 401 (German). · Zbl 0035.02603 · doi:10.1007/BF02038450 · doi.org
[49] Hans-Heinrich Ostmann, Verfeinerte Lösung der asymptotischen Dichtenaufgabe, J. Reine Angew. Math. 187 (1950), 183 – 188 (German). · Zbl 0036.02501 · doi:10.1515/crll.1950.187.183 · doi.org
[50] Hans-Heinrich Ostmann, Über die Anzahl der Elemente von Summenmengen, J. Reine Angew. Math. 187 (1950), 222 – 230 (German). · Zbl 0039.27401 · doi:10.1515/crll.1950.187.222 · doi.org
[51] G. Pólya, Untersuchungen über Lücken and Singularitäten von Potenzreihen Math. Zeit. vol. 29 (1929) pp. 549-640. · JFM 55.0186.02
[52] H. Rohrbach, Beweis einer zahlentheoretische Ungleichung, J. Reine Angew. Math. vol. 177 (1937) pp. 193-196. · Zbl 0017.05501
[53] H. Rohrbach, Einige neuere Untersuchungen über die Dichte in der additiven Zahlentheorie, Jber. Deutschen Math. Verein. vol. 48 (1938) pp. 199-236. · Zbl 0020.00305
[54] N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109 (1934), no. 1, 668 – 678 (German). · JFM 60.0131.03 · doi:10.1007/BF01449161 · doi.org
[55] R. Salem and D. C. Spencer, The influence of gaps on density of integers, Duke Math. J. 9 (1942), 855 – 872. · Zbl 0061.07601
[56] R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 561 – 563. · Zbl 0060.10301
[57] R. Salem and D. C. Spencer, On sets which do not contain a given number of terms in arithmetical progression, Nieuw Arch. Wiskunde (2) 23 (1950), 133 – 143. · Zbl 0039.27402
[58] L. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933), no. 1, 649 – 690 (German). · JFM 59.0198.01 · doi:10.1007/BF01448914 · doi.org
[59] I. J. Schoenberg, On asymptotic distributions of arithmetical functions, Trans. Amer. Math. Soc. 39 (1936), no. 2, 315 – 330. · Zbl 0013.39302
[60] Sigmund Selberg, Note on the distribution of the integers \?\?²+\?\?²+\?^\?², Arch. Math. Naturvid. 50 (1949), no. 2, 65 – 69.
[61] Harold N. Shapiro, Some remarks on a theorem of Erdös concerning asymptotic density, Proc. Amer. Math. Soc. 1 (1950), 590 – 592. · Zbl 0040.16202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.