On countable generalised \(\sigma\)-algebras with a new proof of Gödel’s completeness theorem. (English) Zbl 0045.15002


03-XX Mathematical logic and foundations


Full Text: EuDML


[1] G. Birkhoff: Lattice Theory. Am. Math. Soc. Coll. Publ. XXV. Sec. 1948. · Zbl 0033.10103
[2] K. Gödel: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Mh. Math. Ph. 37 (1930). · JFM 56.0046.04
[3] D. Hilbert W. Ackermann: Grundzüge der theoretischen Logik. Grundl. d. math. Wiss. XXVII Springer, Zw. A. 1938. · JFM 64.0026.05
[4] D. Hilbert P. Bernays: Grundlagen der Mathematik. Bd. II, Springer 1939. · Zbl 0020.19301
[5] L. Henkin: A proof of completeness for the first order functional calculus. J. Symb. L. 14, (1949), 159-166. · Zbl 0034.00602
[6] H. L. Loomis: On the representation of \(\sigma\)-complete Boolean algebras. Bull. Am. Math. Soc. 53 (1947), 757-760. · Zbl 0033.01103
[7] H. Mac Neille: Extensions of partially ordered sets. Proc. Nat. Ac. USA, 22 (1936), 45-50. · Zbl 0013.24302
[8] A. Mostowski: Logika matematyczna. Monografie mat., Warszawa, 1948.
[9] A. Mostowski: Abzählbare Boolesche Körper und ihre Anwendung in der Metamathematik. Fund. Math. 29 (1937), 34-53. · Zbl 0016.33704
[10] L. Rieger: On \(\aleph_ \xi\)-complete free Boolean Algebras. (With an application to logic.) · Zbl 0044.26103
[11] R. Sikorski: On the representation of Boolean algebras as fields of sets. Fund. Math. 35 (1948), 247-258. · Zbl 0035.01704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.