Debreu, Gerard A social equilibrium existence theorem. (English) Zbl 0047.38804 Proc. Natl. Acad. Sci. USA 38, 886-893 (1952). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 354 Documents Keywords:mathematical biology, operations research × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aronszajn, N., and Borsuk, K., ”Sur la somme et le produit combinatoire des rétractes absolus,” Fundamenta Mathematicae, 18, 193–197 (1932) · Zbl 0004.22603 [2] Arrow, K. J., and Debreu, G., ”Existence of an Equilibrium for a Competitive Economy,” Econometrica, in press (1953) · Zbl 0055.38007 [3] Begle, E. G., ”A Fixed Point Theorem,” Ann. Math., 51, No. 3, 544–550 (May, 1950) · Zbl 0036.38901 · doi:10.2307/1969367 [4] Borsuk, K., ”Über eine Klasse von lokal zusammenhängenden Räumen,” Fundamenta Mathematicae, Vol. 19 (1932), p. 220–242 · JFM 58.0629.02 [5] Bourbaki, N., Eléments de Mathématique, Première partie, Livre III, Chap. IV, §4, Hermann, Paris, 1942 [6] Eilenberg, S., and Montgomery, D., ”Fixed Point Theorems for Multi-valued Transformations,” Am. J. Math., 68, 214–222 (1946) · Zbl 0060.40203 · doi:10.2307/2371832 [7] Kakutani, S., ”A Generalization of Brouwer’s Fixed Point Theorem,” Duke Math. J., 8, No. 3, 457–459 (September, 1941) · JFM 67.0742.03 · doi:10.1215/S0012-7094-41-00838-4 [8] Nash, John F., ”Equilibrium Points in N-Person Games,” Proc. Natl. Acad. Sci. 36, 48–49 (1950) · Zbl 0036.01104 · doi:10.1073/pnas.36.1.48 [9] Neumann, J. von, ”Zur Theorie der Gesellschaftsspiele,” Math. Ann., 100, 295–320 (1928) · JFM 54.0543.02 · doi:10.1007/BF01448847 [10] Neumann, J. von, ”Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes,” Ergebnisse eines Mathematischen Kolloquiums, 8, 73–83 (1937), (translated in Rev. Economic Studies, XIII, No. 33, 1–9 (1945–46) · Zbl 0017.03901 [11] Neumann, J. von, and Morgenstem, O., Theory of Games and Economic Behavior, 2nd ed., Princeton University Press, Princeton, 1947 (1st ed., 1944) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.