×

zbMATH — the first resource for mathematics

Statistical theory of equations of state and phase transitions. I: Theory of condensation. (English) Zbl 0048.43305

MSC:
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. N. Yang, Phys. Rev. 85 pp 808– (1952) · Zbl 0046.45304 · doi:10.1103/PhysRev.85.808
[2] L. Onsager, Phys. Rev. 65 pp 117– (1944) · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[3] B. Kaufman, Phys. Rev. 76 pp 1232– (1949) · Zbl 0035.42801 · doi:10.1103/PhysRev.76.1232
[4] J. E. Mayer, J. Chem. Phys. 5 pp 67– (1937) · Zbl 0016.08906 · doi:10.1063/1.1749933
[5] J. E. Mayer, J. Chem. Phys. 5 pp 74– (1937) · Zbl 0016.08907 · doi:10.1063/1.1749934
[6] J. E. Mayer, J. Chem. Phys. 6 pp 87– (1938) · doi:10.1063/1.1750208
[7] B. Kahn, Physica 5 pp 399– (1938) · doi:10.1016/S0031-8914(38)80068-9
[8] M. Born, Proc. Roy. Soc. (London) A166 pp 391– (1938) · Zbl 0019.32004 · doi:10.1098/rspa.1938.0100
[9] L. von Hove, Physica 15 pp 951– (1949) · Zbl 0036.40602 · doi:10.1016/0031-8914(49)90059-2
[10] J. E. Mayer, in: Statistical Mechanics (1946)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.