×

zbMATH — the first resource for mathematics

Statistical theory of equations of state and phase transitions. II: Lattice gas and Ising model. (English) Zbl 0048.43401

MSC:
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. N. Yang, Phys. Rev. 87 pp 404– (1952) · Zbl 0048.43305 · doi:10.1103/PhysRev.87.404
[2] J. E. Lennard-Jones, in: Proc. Roy. Soc. (London) (1939)
[3] J. E. Lennard-Jones, Proc. Roy. Soc. (London) A170 pp 464– (1939) · Zbl 0021.18401 · doi:10.1098/rspa.1939.0043
[4] F. Cernuschi, J. Chem. Phys. 7 pp 547– (1939) · doi:10.1063/1.1750485
[5] L. Onsager, Phys. Rev. 65 pp 117– (1944) · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[6] B. Kaufman, Phys. Rev. 76 pp 1232– (1949) · Zbl 0035.42801 · doi:10.1103/PhysRev.76.1232
[7] C. N. Yang, Phys. Rev. 85 pp 808– (1952) · Zbl 0046.45304 · doi:10.1103/PhysRev.85.808
[8] J. E. Mayer, J. Chem. Phys. 5 pp 67– (1937) · Zbl 0016.08906 · doi:10.1063/1.1749933
[9] J. E. Mayer, J. Chem. Phys. 5 pp 74– (1937) · Zbl 0016.08907 · doi:10.1063/1.1749934
[10] J. E. Mayer, J. Chem. Phys. 6 pp 87– (1938) · doi:10.1063/1.1750208
[11] Mathias, Proc. Sect. Sci. Amsterdam 15 pp 960– (1913)
[12] A. Wintner, Monatsh. Math. Phys. 4 pp 1– (1934) · Zbl 0009.25302 · doi:10.1007/BF01697842
[13] H. A. Kramers, Phys. Rev. 60 pp 252– (1941) · Zbl 0027.28505 · doi:10.1103/PhysRev.60.252
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.