×

A class of nonharmonic Fourier series. (English) Zbl 0049.32401


Full Text: DOI

References:

[1] R. P. Boas Jr., A trigonometric moment problem, J. London Math. Soc. 14 (1939), 242 – 244. · JFM 65.1325.04 · doi:10.1112/jlms/s1-14.4.242
[2] R. P. Boas Jr., Entire functions bounded on a line, Duke Math. J. 6 (1940), 148 – 169. · JFM 66.1248.01
[3] R. P. Boas Jr., A general moment problem, Amer. J. Math. 63 (1941), 361 – 370. · JFM 67.0423.01 · doi:10.2307/2371530
[4] D. G. Bourgin, A class of sequences of functions, Trans. Amer. Math. Soc. 60 (1946), 478 – 518. · Zbl 0061.13404
[5] R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener, Bull. Amer. Math. Soc. 48 (1942), 850 – 855. · Zbl 0061.13405
[6] R. J. Duffin and A. C. Schaeffer, Power series with bounded coefficients, Amer. J. Math. 67 (1945), 141 – 154. · Zbl 0060.20903 · doi:10.2307/2371922
[7] I. I. Ibragimov, On the completeness of systems of analytic functions {\?(\?_{\?}\?)}, Izvestiya Akad. Nauk SSSR. Ser. Mat. 13 (1949), 45 – 54 (Russian). · Zbl 0036.18403
[8] Norman Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, v. 26, American Mathematical Society, New York, 1940. · Zbl 0145.08003
[9] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. · Zbl 0011.01601
[10] M. Plancherel and G. Pólya, Functions entières et intégrales de Fourier multiples, Comment. Math. Helv. vol. 10 (1937-1938) pp. 110-163. · Zbl 0018.15204
[11] E. C. Titchmarsh, The theory of functions, Oxford, 1932, chap. III. · Zbl 0005.21004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.