×

On the invariant theory of contact transformations. (English) Zbl 0050.16304


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Eisenhart, L. P., andM. S. Knebelman: Invariant theory of homogeneous contact transformations. Ann. of Math.37, 747-765 (1936). · Zbl 0015.41701
[2] Schouten, J. A.: Zur Differentialgeometrie der Gruppe der Berührungstransformationen. Proc. Akad. Amsterdam40, 100-107, 236-245, 470-480 (1937). · Zbl 0016.32702
[3] Doyle, T. C.: Tensor decomposition with applications to the contact and complex groups. Ann. of Math.42, 698-721 (1941). · Zbl 0025.21802
[4] Muto, Y., andK. Yano: Sur les transformations de contact et les espaces de Finsler. Tohoku Math. J.45, 295-307 (1939). · Zbl 0021.06503
[5] Vranceanu, G.: Studio geometrica dei sistemi anolonomi. Ann. Mat. pura appl., VI. ser.4, 9-43 (1928). · JFM 55.1031.01
[6] Schouten, J. A., u.E. R. van Kampen: Zur Einbettungs- und Krümmungstheorie nicht holonomer Gebilde. Math. Ann.103, 752-783 (1930). · JFM 56.0635.02
[7] Dienes, P.: On the fundamental formulae of the geometry of tensor submanifolds. J. Math. pures appl., IX. ser.2, 255-282 (1932). · Zbl 0005.31101
[8] Davies, E. T.: On metric spaces based on a vector density. Proc. London Math. Soc., II. ser.49, 241-259 (1947). · Zbl 0041.30304
[9] Cartan, E.: Les espaces de Finsler. Actual. sci. industr.79 (1934). · Zbl 0008.41805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.