×

zbMATH — the first resource for mathematics

On the structure of algebraic algebras and related rings. (English) Zbl 0050.26102

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449 – 463. · Zbl 0040.01101
[2] Richard F. Arens and Irving Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457 – 481. · Zbl 0032.00702
[3] Reinhold Baer, Radical ideals, Amer. J. Math. 65 (1943), 537 – 568. · Zbl 0060.07104
[4] Alexandra Forsythe and Neal H. McCoy, On the commutativity of certain rings, Bull. Amer. Math. Soc. 52 (1946), 523 – 526. · Zbl 0060.07705
[5] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300 – 320. · Zbl 0060.07305
[6] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math. (2) 46 (1945), 695 – 707. · Zbl 0060.07501
[7] N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352 – 355. · Zbl 0037.15901
[8] Irving Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575 – 580. · Zbl 0032.00701
[9] Irving Kaplansky, Topological representation of algebras. II, Trans. Amer. Math. Soc. 68 (1950), 62 – 75. · Zbl 0035.30301
[10] Irving Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219 – 255. · Zbl 0042.34901
[11] Gottfried Köthe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist, Math. Z. 32 (1930), no. 1, 161 – 186 (German). · JFM 56.0143.01
[12] Jakob Levitzki, On the radical of a general ring, Bull. Amer. Math. Soc. 49 (1943), 462 – 466. · Zbl 0060.07502
[13] J. Levitzki, A theorem on polynomial identities, Proc. Amer. Math. Soc. 1 (1950), 334 – 341. · Zbl 0037.30604
[14] N. H. McCoy, Generalized regular rings, Bull. Amer. Math. Soc. 45 (1939), no. 2, 175 – 178. · Zbl 0020.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.