zbMATH — the first resource for mathematics

Borel’s theorem on \(a\)-points and exceptional values of entire and meromorphic functions. (English) Zbl 0050.30402

Full Text: DOI EuDML
[1] Milloux, H.: Les Fonctions Meromorphes et leurs Derivees, XIV. Paris 1940. · JFM 66.1249.04
[2] Milloux, H.: Sur le Theorie des defauts. C. R. Acad. Sci. Paris210, 38-39. · Zbl 0023.05303
[3] Ne vanlinna, R.: Le Theoreme dePicard-Borel et la Theorie des fonctions Meromorphes. Paris 1929.
[4] Shah, S. M.: On Exceptional Values of Entire Functions. Comp. Math.9, 227-238 (1951). · Zbl 0043.29703
[5] Shah, S. M.: Exceptional Values of Entire and meromorphic Functions. Duke Math. J.19, 585-594 (1952). · Zbl 0047.31701
[6] Shah, S. M.: The Lower Order of the Zeros of an Integral Function. J. Indian Math. Soc.6, 63-68 (1942). · Zbl 0061.15105
[7] Shah, S. M.: On the Lower Order of Integral Functions. Bull. Amer. Math. Soc.52, 1046-1052 (1946). · Zbl 0061.15109
[8] Shah, S. M.: A Theorem on Integral Functions of Integral Order (II). J. Indian Math. Soc.5, 179-188 (1942). · Zbl 0061.15008
[9] Whittaker, J. M.: The Lower Order of Integral Functions. J. London Math. Soc.8, 20-27 (1933). · Zbl 0006.21202
[10] Valiron, G.: Lectures on the General Theory of Integral Functions. Toulouse 1923. · JFM 50.0254.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.