×

The representation of abstract integrals. (English) Zbl 0051.29203


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Freudenthal, Teilweise geordnete Moduln, Proc. Nederl. Akad. Wetensch. vol. 39 (1936) pp. 641-651. · JFM 62.0091.01
[2] Einar Hille, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, New York, 1948. · Zbl 0033.06501
[3] L. Kantorovitch, Linear operations in semi-ordered spaces. I, Rec. Math. [Mat. Sbornik] N.S. 7 (49) (1940), 209 – 284 (English, with Russian summary). · JFM 66.0527.01
[4] Dorothy Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 108 – 111. · Zbl 0063.03723
[5] Dorothy Maharam, The representation of abstract measure functions, Trans. Amer. Math. Soc. 65 (1949), 279 – 330. · Zbl 0036.31401
[6] Dorothy Maharam, Decompositions of measure algebras and spaces, Trans. Amer. Math. Soc. 69 (1950), 142 – 160. · Zbl 0041.18002
[7] HidegorĂ´ Nakano, Modern Spectral Theory, Maruzen Co., Ltd., Tokyo, 1950. · Zbl 0041.23402
[8] Otton Martin Nikodym, Tribus de Boole et fonctions mesurables. Tribu spectrale d’une fonction, C. R. Acad. Sci. Paris 228 (1949), 37 – 38 (French). · Zbl 0041.17901
[9] S. Saks, Theory of the integral, Warsaw, 1937. · Zbl 0017.30004
[10] M. H. Stone, Boundedness properties in function-lattices, Canadian J. Math. 1 (1949), 176 – 186. · Zbl 0032.16901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.