A projected conjugate gradient method for sparse minimax problems. (English) Zbl 0789.65047

The author presents a trust region type first order method based on sequential linear programming for solving nonlinear minimax problems. Numerical results show that this method has considerable improvement over other first order methods.


65K05 Numerical mathematical programming methods
90C30 Nonlinear programming


Full Text: DOI


[1] D.H. Andersson and M.R. Osborne, Discrete nonlinear approximation in polyhedral norms: a Levenberg-like algorithm, Numer. Math. 28 (1977) 157–170. · Zbl 0342.65005
[2] C. Charalambous and A.R. Conn, An efficient method to solve the minimax problem directly, SIAM J. Numer. Anal. 15 (1978) 162–187. · Zbl 0384.65032
[3] A.R. Conn, An efficient second order method to solve the (constrained) minimax problem, Report CCRR 79-5, Dept. of Combinatorics and Optimization, Univ. of Waterloo, Canada (1979).
[4] A.R. Conn, N.I.M. Gould and Ph.L. Toint,LANCELOT: A Fortran Package for Large Scale Nonlinear Optimization (Release A) (Springer, 1992). · Zbl 0761.90087
[5] A.R. Conn and Yuying Li, An efficient algorithm for nonlinear minimax problems, University of Waterloo report CS-88-41 (1989).
[6] L. Cromme, Strong uniqueness, Numer. Math. 29 (1978) 179–194. · Zbl 0352.65012
[7] R. Fletcher, A model algorithm for composite nondifferentiable optimization problems, Math. Prog. Study 17 (1982) 67–76. · Zbl 0478.90063
[8] R. Fletcher,Practical Methods of Optimization, 2nd ed. (Wiley, 1987). · Zbl 0905.65002
[9] R. Fletcher, Low storage methods for unconstrained optimization, Report NA117, Dept. of Math. Sciences, University of Dundee (1988). · Zbl 0699.65052
[10] R. Fletcher and E. Sainz de la Maza, Nonlinear programming and nonsmooth optimization by successive linear programming, Math. Prog. 43 (1989). · Zbl 0724.90062
[11] J. Hald, MMLA1Q, a FORTRAN subroutine for linearly constrained minimax optimization, Report no. NI-81-01, Inst. for Numer. Anal., Technical University of Denmark (1981).
[12] J. Hald and K. Madsen, Combined LP and quasi-Newton methods for minimax optimization, Math. Prog. 20 (1981). · Zbl 0441.90097
[13] S.P. Han, Variable metric methods for minimizing a class of nondifferentiable functions, Math. Prog. 20 (1981) 1–13. · Zbl 0441.90095
[14] R. Hettich, A Newton-method for nonlinear Chebyshev approximation, in:Approximation Theory, eds. R. Schaback and K. Scherer, Lect. Notes in Math. 556 (Springer, Berlin, 1976) pp. 222–236.
[15] K. Jōnasson and K. Madsen, Corrected sequential linear programming for sparse minimax optimization, Report NI-92-06, Inst. for Numer. Anal., Technical University of Denmark (1992). · Zbl 0813.65090
[16] K. Madsen, An algorithm for minimax solution of over-determined systems of non-linear equations, J. Inst. Math. Appl. 16 (1975) 321–328. · Zbl 0355.65038
[17] K. Madsen, O. Tingleff, P.Chr. Hansen and W. Owczarc, Robust subroutines for non-linear optimization, Report NI-90-06, Inst. for Numer. Anal., Technical University of Denmark (1990).
[18] W. Murray and M.L. Overton, A projected Lagrangian algorithm for nonlinear minimax optimization, SIAM J. Sci. Stat. Comp. 1 (1980) 345–370. · Zbl 0461.65052
[19] M.R. Osborne and G.A. Watson, An algorithm for minimax optimization in the non-linear case, Comp. J. 12 (1969) 63–68. · Zbl 0164.45802
[20] G. Di Pillo, L. Grippo and S. Lucidi, A smooth method for the finite minimax problem, Report Rap.05.92, Dipartimento di Informatica e Sistematica, Università di Roma (1992). · Zbl 0799.90106
[21] G.A. Watson, The minimax solution of an overdetermined system of non-linear equations, J. Inst. Math. Appl. 23 (1979) 167–180. · Zbl 0406.65025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.