×

zbMATH — the first resource for mathematics

Théorèmes taubériens pour les séries multiples de Dirichlet et les intégrales multiples de Laplace. (French) Zbl 0052.05703

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] ANANDA-RAU , On the converse of Abel’s theorem (J. London Math. Soc., vol. 3, 1928 , p. 200-205). JFM 54.0232.03 · JFM 54.0232.03
[2] ANANDA-RAU , An example in the theory of summation by Riesz typical means [Proc. London Math. Soc., (2), t. 30, 1930 , p. 367-372]. JFM 56.0209.02 · JFM 56.0209.02
[3] D. L. BERNSTEIN , The double Laplace integral (Duke Math. J., t. 8, 1941 , p. 460-496). Article | MR 3,38e | Zbl 0063.00332 | JFM 67.0386.03 · Zbl 0063.00332
[4] H. DELANGE , Théorèmes taubériens pour les séries doubles (C. R. Acad. Sc., t. 225, 1947 , p. 855-856). MR 9,425e | Zbl 0029.02502 · Zbl 0029.02502
[5] H. DELANGE , Théorèmes taubériens pour les séries multiples de Dirichlet (C. R. Acad. Sc., t. 226, 1948 , p. 377-379). MR 9,425f | Zbl 0030.35101 · Zbl 0030.35101
[6] H. DELANGE , The converse of Abel’s theorem on power series (Ann. Math., t. 50, 1949 . p. 94-109). MR 10,368e | Zbl 0032.06002 · Zbl 0032.06002
[7] H. DELANGE , Sur les théorèmes inverses des procédés de sommation des séries divergentes (premier Mémoire) [Ann. Sc. Éc. Norm. Sup., (3), t. 67, 1950 , p. 99-160]. Numdam | MR 12,253d | Zbl 0039.06402 · Zbl 0039.06402
[8] H. DELANGE , Sur les théorèmes inverses des procédés de sommation des séries divergentes (deuxième Mémoire) [Ann. Sc. Éc. Norm. Sup., (3), t. 67, 1950 , p. 199-242]. Numdam | MR 12,253e | Zbl 0041.38303 · Zbl 0041.38303
[9] DURAŇONA Y VEDIA , Teoremas abelianos y tauberianos de dos variables [Univ. Nac. de la Plata, Publ. de la Fac. de ciencias fisicomat., (2), t. 4, 1940 , p. 291-324]. JFM 66.0268.01 · JFM 66.0268.01
[10] HARDY et LITTLEWOOD , Contributions to the arithmetic theory of series [Proc. London Math. Soc., (2), t. 11, 1913 , p. 411-478]. JFM 43.0312.01 · JFM 43.0312.01
[11] HARDY et LITTLEWOOD , Some theorems concerning Dirichlet series [Messenger of Mathematics, (2), t. 43, 1914 , p. 134-147]. JFM 45.0390.01 · JFM 45.0390.01
[12] KARAMATA , Bemerkung zur Note : Ueber einige Inversionssätze der Limitierungs-verfahren (Publ. Math. Univ. de Belgrade, t. 4, 1935 , p. 181-184). Zbl 0014.30001 | JFM 61.1098.01 · Zbl 0014.30001
[13] KNOPP , Limitierungs-Umkehrsätze für Doppelfolgen (Math. Z., Bd 45, 1939 , p. 573-589). MR 1,51c | Zbl 0023.02801 | JFM 65.0239.03 · Zbl 0023.02801
[14] E. LANDAU , Ueber einen Satz des Herrn Littlewood (Rendiconti del Circolo Math. di Palermo, vol. 35, 1913 , p. 265-276). JFM 44.0282.01 · JFM 44.0282.01
[15] J. E. LITTLEWOOD , The converse of Abel’s theorem on power series [Proc. London Math. Soc., (2), t. 9, 1911 , p. 434-448]. JFM 42.0276.01 · JFM 42.0276.01
[16] O. SASZ , Ueber Dirichletsche Reihen an der Konvergenzgrenze (Atti del Congresso internazionale dei mathematici, Bologna, 1928 , vol. III, p. 269-276). JFM 56.0211.03 · JFM 56.0211.03
[17] O. SASZ , Verallgemeinerung und neuer Beweis einiger Sätze tauberscher Art (Sitz. Bayer. Akad. Wiss., 1929 , p. 325-340). JFM 55.0732.01 · JFM 55.0732.01
[18] O. SASZ , Converse theorems of summability for Dirichlet series (Trans. Amer. Math. Soc., t. 39, 1936 , p. 117-130). MR 1501837 | Zbl 0013.26202 | JFM 62.0225.02 · Zbl 0013.26202
[19] A. TAUBER , Ein Satz aus der Theorie der unendlichen Reihen (Monatsh. Math., vol. 8, 1897 , p. 273-277). JFM 28.0221.02 · JFM 28.0221.02
[20] D. VOELKER et G. DOETSCH , Die zweidimensionale Laplace-Transformation , Verlag Birkhaüser Basel, 1950 . Zbl 0040.05902 · Zbl 0040.05902
[21] W. H. YOUNG , On multiple integration by parts and the second theorem of the mean [Proc. London Math. Soc., (2), t. 16, 1917 , p. 273-293]. JFM 46.0389.01 · JFM 46.0389.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.