Ambrose, W.; Singer, I. M. A theorem on holonomy. (English) Zbl 0052.18002 Trans. Am. Math. Soc. 75, 428-443 (1953). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 107 Documents Keywords:Riemannian manifolds PDFBibTeX XMLCite \textit{W. Ambrose} and \textit{I. M. Singer}, Trans. Am. Math. Soc. 75, 428--443 (1953; Zbl 0052.18002) Full Text: DOI References: [1] Armand Borel and André Lichnerowicz, Groupes d’holonomie des variétés riemanniennes, C. R. Acad. Sci. Paris 234 (1952), 1835 – 1837 (French). · Zbl 0046.39801 [2] E. Cartan, Les groupes d’holonomie des espaces généralises, Acta Math. vol. 48, pp. 1-42. · JFM 52.0723.01 [3] Henri Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 15 – 27 (French). · Zbl 0045.30601 [4] Henri Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 57 – 71 (French). · Zbl 0045.30701 [5] S. S. Chern, Notes on differential geometry, Institute for Advanced Study notes, 1951. [6] C. Chevalley, Lie groups, Princeton University Press, 1946. · Zbl 0063.00842 [7] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 29 – 55 (French). · Zbl 0054.07201 [8] Hidehiko Yamabe, On an arcwise connected subgroup of a Lie group, Osaka Math. J. 2 (1950), 13 – 14. · Zbl 0039.02101 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.