×

zbMATH — the first resource for mathematics

A note on paracompact spaces. (English) Zbl 0052.18701

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Bing, Metrization of topological spaces, Canadian J. Math. 3 (1951), 175 – 186. · Zbl 0042.41301
[2] N. Bourbaki, Integration, Paris, Hermann, 1952.
[3] Jean Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. (9) 23 (1944), 65 – 76 (French). · Zbl 0060.39508
[4] Jean Dieudonné, Sur un espace localement compact non métrisable, Anais Acad. Brasil. Ci. 19 (1947), 67 – 69 (French).
[5] C. H. Dowker, An imbedding theorem for paracompact metric spaces, Duke Math. J. 14 (1947), 639 – 645. · Zbl 0029.42203
[6] Kiiti Morita, Star-finite coverings and the star-finite property, Math. Japonicae 1 (1948), 60 – 68. · Zbl 0041.09704
[7] Jun-iti Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A. Math. 1 (1950), 93 – 100. · Zbl 0041.09801
[8] Yu. Smirnov, A necessary and sufficient condition for metrizability of a topological space, Doklady Akad. Nauk SSSR (N.S.) 77 (1951), 197 – 200 (Russian). · Zbl 0042.16801
[9] Yu. M. Smirnov, On normally disposed sets of normal spaces, Mat. Sbornik N.S. 29(71) (1951), 173 – 176 (Russian). · Zbl 0043.16502
[10] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631 – 632. · Zbl 0031.28302
[11] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977 – 982. · Zbl 0032.31403
[12] John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no. 2, Princeton University Press, Princeton, N. J., 1940. · Zbl 0025.09102
[13] Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), no. 1, 262 – 295 (German). · JFM 51.0452.05
[14] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213 – 245. · Zbl 0040.38704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.