×

Functions representable as differences of subharmonic functions. (English) Zbl 0052.33301


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] James A. Clarkson and C. Raymond Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), no. 4, 824 – 854. · Zbl 0008.00602
[2] C. Raymond Adams and James A. Clarkson, Properties of functions \?(\?,\?) of bounded variation, Trans. Amer. Math. Soc. 36 (1934), no. 4, 711 – 730. · Zbl 0010.19902
[3] S. Banach Théorie des opérations linéaires, Warsaw, 1932.
[4] M. Brelot Étude des fonctions sousharmoniques au voisinage d’un point, Actualités Scientifiques et Industrielles, vol. 139, 1934, pp. 5-55. · Zbl 0009.01902
[5] -Sur l’allure des fonctions harmoniques et sousharmoniques à la frontière, Mathematische Nachrichten vol. 4 (1950) pp. 248-307.
[6] -Sur l’intégration de \( \Delta u(M) = \phi (M)\), C. R. Acad. Sci. Paris vol. 201 (1945) pp. 1316-1318. · Zbl 0013.01702
[7] Marcel Brelot, Minorantes sous-harmoniques, extrémales et capacités, J. Math. Pures Appl. (9) 24 (1945), 1 – 32 (French). · Zbl 0061.22802
[8] M. Brelot, Sur les ensembles effilés, Bull. Sci. Math. (2) 68 (1944), 12 – 36 (French). · Zbl 0028.36201
[9] Marcel Brelot, Deux théorèmes généraux sur le potentiel et quelques applications, C. R. Acad. Sci. Paris 226 (1948), 1499 – 1500 (French). · Zbl 0030.30303
[10] Henri Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74 – 106 (French). · Zbl 0061.22609
[11] Jacques Deny, Sur les infinis d’un potentiel, C. R. Acad. Sci. Paris 224 (1947), 524 – 525 (French). · Zbl 0029.04002
[12] Jacques Deny, Les potentiels d’énergie finie, Acta Math. 82 (1950), 107 – 183 (French). · Zbl 0034.36201 · doi:10.1007/BF02398276
[13] Griffith C. Evans, Complements of Potential Theory. Part II, Amer. J. Math. 55 (1933), no. 1-4, 29 – 49. · Zbl 0006.20402 · doi:10.2307/2371108
[14] Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. (2) 57 (1953), 458 – 474. · Zbl 0052.11801 · doi:10.2307/1969730
[15] R. Nevanlinna Eindeutige analytische Funktionen, Berlin, 1936.
[16] E. E. Privaloff A generalization of Jensen’s formula, part I, Izvestia Akad. Nauk. vol. 6-7 (1935) pp. 837-847.
[17] -Subharmonic functions, Moscow, 1937.
[18] T. Radó Subharmonic functions, Berlin, 1937.
[19] F. Riesz Sur certains systèmes singuliers d’équations intégrales, Ann. École Norm. vol. 28 (1911) pp. 5-62.
[20] P. C. Rosenbloom, Mass distributions and their potentials, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 130 – 138.
[21] Walter Rudin, Integral representation of continuous functions, Trans. Amer. Math. Soc. 68 (1950), 278 – 286. · Zbl 0037.34702
[22] S. Saks Theory of the integral, 2d rev. ed., Warsaw-Lwów, 1937.
[23] Laurent Schwartz, Théorie des distributions et transformation de Fourier, Analyse Harmonique, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 15, Centre National de la Recherche Scientifique, Paris, 1949, pp. 1 – 8 (French). · Zbl 0039.33201
[24] -Théorie des distributions, vol. II, Actualités Scientifiques et Industrielles, no. 1122, 1951.
[25] J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Bull. Amer. Math. Soc. 35 (1929), no. 4, 499 – 544.
[26] N. Wiener Laplacians and continuous linear functionals, Acta Szeged vol. 3 (1927) pp. 7-16.
[27] S. Zaremba Contribution à la théorie d’une équation fonctionelle de la physique, Rend. Circ. Mat. Palermo vol. 19 (1905) pp. 140-150.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.