×

zbMATH — the first resource for mathematics

Functions representable as differences of subharmonic functions. (English) Zbl 0052.33301

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] James A. Clarkson and C. Raymond Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), no. 4, 824 – 854. · Zbl 0008.00602
[2] C. Raymond Adams and James A. Clarkson, Properties of functions \?(\?,\?) of bounded variation, Trans. Amer. Math. Soc. 36 (1934), no. 4, 711 – 730. · Zbl 0010.19902
[3] S. Banach Théorie des opérations linéaires, Warsaw, 1932. · JFM 58.0420.01
[4] M. Brelot Étude des fonctions sousharmoniques au voisinage d’un point, Actualités Scientifiques et Industrielles, vol. 139, 1934, pp. 5-55. · Zbl 0009.01902
[5] -Sur l’allure des fonctions harmoniques et sousharmoniques à la frontière, Mathematische Nachrichten vol. 4 (1950) pp. 248-307.
[6] -Sur l’intégration de \( \Delta u(M) = \phi (M)\), C. R. Acad. Sci. Paris vol. 201 (1945) pp. 1316-1318. · Zbl 0013.01702
[7] Marcel Brelot, Minorantes sous-harmoniques, extrémales et capacités, J. Math. Pures Appl. (9) 24 (1945), 1 – 32 (French). · Zbl 0061.22802
[8] M. Brelot, Sur les ensembles effilés, Bull. Sci. Math. (2) 68 (1944), 12 – 36 (French). · Zbl 0028.36201
[9] Marcel Brelot, Deux théorèmes généraux sur le potentiel et quelques applications, C. R. Acad. Sci. Paris 226 (1948), 1499 – 1500 (French). · Zbl 0030.30303
[10] Henri Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74 – 106 (French). · Zbl 0061.22609
[11] Jacques Deny, Sur les infinis d’un potentiel, C. R. Acad. Sci. Paris 224 (1947), 524 – 525 (French). · Zbl 0029.04002
[12] Jacques Deny, Les potentiels d’énergie finie, Acta Math. 82 (1950), 107 – 183 (French). · Zbl 0034.36201 · doi:10.1007/BF02398276 · doi.org
[13] Griffith C. Evans, Complements of Potential Theory. Part II, Amer. J. Math. 55 (1933), no. 1-4, 29 – 49. · Zbl 0006.20402 · doi:10.2307/2371108 · doi.org
[14] Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. (2) 57 (1953), 458 – 474. · Zbl 0052.11801 · doi:10.2307/1969730 · doi.org
[15] R. Nevanlinna Eindeutige analytische Funktionen, Berlin, 1936. · JFM 62.0315.02
[16] E. E. Privaloff A generalization of Jensen’s formula, part I, Izvestia Akad. Nauk. vol. 6-7 (1935) pp. 837-847.
[17] -Subharmonic functions, Moscow, 1937. · JFM 63.0458.05
[18] T. Radó Subharmonic functions, Berlin, 1937. · JFM 63.0458.05
[19] F. Riesz Sur certains systèmes singuliers d’équations intégrales, Ann. École Norm. vol. 28 (1911) pp. 5-62. · JFM 42.0374.03
[20] P. C. Rosenbloom, Mass distributions and their potentials, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 130 – 138.
[21] Walter Rudin, Integral representation of continuous functions, Trans. Amer. Math. Soc. 68 (1950), 278 – 286. · Zbl 0037.34702
[22] S. Saks Theory of the integral, 2d rev. ed., Warsaw-Lwów, 1937.
[23] Laurent Schwartz, Théorie des distributions et transformation de Fourier, Analyse Harmonique, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 15, Centre National de la Recherche Scientifique, Paris, 1949, pp. 1 – 8 (French). · Zbl 0039.33201
[24] -Théorie des distributions, vol. II, Actualités Scientifiques et Industrielles, no. 1122, 1951.
[25] J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Bull. Amer. Math. Soc. 35 (1929), no. 4, 499 – 544. · JFM 55.0889.05
[26] N. Wiener Laplacians and continuous linear functionals, Acta Szeged vol. 3 (1927) pp. 7-16. · JFM 53.0376.04
[27] S. Zaremba Contribution à la théorie d’une équation fonctionelle de la physique, Rend. Circ. Mat. Palermo vol. 19 (1905) pp. 140-150. · JFM 36.0822.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.