×

zbMATH — the first resource for mathematics

Functions of potential type. (English) Zbl 0052.33302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Maynard G. Arsove, Functions representable as differences of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327 – 365. · Zbl 0052.33301
[2] -Thesis, Brown University, 1950.
[3] S. Banach Théorie des opérations linéaires, Warsaw, 1932. · JFM 58.0420.01
[4] Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, revised edition, American Mathematical Society, New York, N. Y., 1948. · Zbl 0033.10103
[5] Marcel Brelot, Étude des fonctions sous-harmoniques au voisinage d’un point singulier, Ann. Inst. Fourier Grenoble 1 (1949), 121 – 156 (1950) (French). · Zbl 0036.06901
[6] M. Brelot, Sur le rôle du point à l’infini dans la théorie des fonctions harmoniques, Ann. Sci. École Norm. Sup. 61 (1944), 301 – 332 (French). · Zbl 0061.22801
[7] -Fonctions sous-harmoniques et balayage (Part 2), Académie Royale de Belgique vol. 24 (1938) pp. 421-436. · JFM 64.0478.02
[8] -Sur la meilleure majorante harmonique d’une fonction sous-harmonique, C. R. Acad. Sci. Paris vol. 205 (1937) p. 12. · Zbl 0016.39506
[9] -Sur les meilleures et plus petites majorantes harmoniques des fonctions sous-harmoniques, C. R. Acad. Sci. Paris vol. 205 (1937) pp. 456-457. · Zbl 0017.11601
[10] Henri Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74 – 106 (French). · Zbl 0061.22609
[11] -Théorie générale du balayage en potentiel newtonien, Annales de l’Université Grenoble vol. 22 (1947) pp. 221-280. · Zbl 0036.34201
[12] Gustave Choquet, Capacitabilité. Théorèmes fondamentaux, C. R. Acad. Sci. Paris 234 (1952), 784 – 786 (French). · Zbl 0046.05704
[13] Griffith C. Evans, On potentials of positive mass. I, Trans. Amer. Math. Soc. 37 (1935), no. 2, 226 – 253. · Zbl 0011.21201
[14] O. Frostman Potentiel d’équilibre et capacité des ensembles, Lund, 1935. · JFM 61.1262.02
[15] Maurice Heins, Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2) 49 (1948), 200 – 213. · Zbl 0029.29801 · doi:10.2307/1969122 · doi.org
[16] Edwin Hewitt, Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161 – 189. · Zbl 0040.06401
[17] Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. (2) 57 (1953), 458 – 474. · Zbl 0052.11801 · doi:10.2307/1969730 · doi.org
[18] Masao Inoue, On the growth of subharmonic functions and its applications to a study of the minimum modulus of integral functions, J. Inst. Polytech. Osaka City Univ. Ser. A. Math. 1 (1950), 71 – 82. · Zbl 0041.06302
[19] Shizuo Kakutani, Concrete representation of abstract (\?)-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941), 523 – 537. · Zbl 0027.11102 · doi:10.2307/1968915 · doi.org
[20] Shizuo Kakutani, Concrete representation of abstract (\?)-spaces. (A characterization of the space of continuous functions.), Ann. of Math. (2) 42 (1941), 994 – 1024. · Zbl 0060.26604 · doi:10.2307/1968778 · doi.org
[21] R. Nevanlinna Eindeutige analytische Funktionen, Berlin, 1936. · JFM 62.0315.02
[22] E. E. Privaloff A generalization of Jensen’s formula. Part I, Izvestia Akad. Nauk vols. 6-7 (1935) pp. 837-847.
[23] T. Radó Subharmonic functions, Berlin, 1937. · JFM 63.0458.05
[24] M. Riesz Intégrales de Riemann-Liouville et potentiels, Acta Szeged. vol. 9 (1938) pp. 1-42. · JFM 64.0476.03
[25] E. C. Titchmarsh Theory of functions, 2d ed., Oxford, 1939. · JFM 65.0302.01
[26] W. R. Transue, Representation of subharmonic functions in the neighborhood of a point, Amer. J. Math. 65 (1943), 335 – 340. · Zbl 0061.23111 · doi:10.2307/2371819 · doi.org
[27] G. Valiron Integral functions, London, 1923. · JFM 50.0254.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.