zbMATH — the first resource for mathematics

Direct theorems on methods of summability. III. Absolute summability functions. (English) Zbl 0053.03603

Full Text: DOI EuDML
[1] Hahn, H.: Über Folgen linearer Operationen. Mh. Math. Phys.32, 3-88 (1922). · JFM 48.0473.01
[2] Hardy, G. H., andM. Riesz: The General Theory of Dirichlet Series. Cambridge 1915. · JFM 45.0387.03
[3] Knopp, K., andG. G. Lorentz: Beiträge zur absoluten Limitierung. Arch. d. Math.2, 10-16 (1949). · Zbl 0041.18402
[4] Lorentz, G. G.: Über Limitierungsverfahren, die von einem Stieltjes-Integral abhängen. Acta Math.79, 255-272 (1947). · Zbl 0029.25304
[5] Lorentz, G. G.: A contribution to the theory of divergent sequences. Acta Math.80, 167-190 (1948). · Zbl 0031.29501
[6] Lorentz, G. G.: Direct theorems on methods of summability. Canad. J. Math.1, 305-319 (1949). · Zbl 0034.03403
[7] Lorentz, G. G.: Direct theorems on methods of summability. II. Canad. J. Math.3, 236-256 (1951). · Zbl 0042.29402
[8] Lorentz, G. G.: Riesz methods of summation and orthogonal series. Trans. Roy. Soc. Canada, III. Ser.45, 19-32 (1951). · Zbl 0045.17802
[9] Mears, F. M.: Absolute regularity and the Nörlund mean. Ann. of Math.38, 594-601 (1937). · Zbl 0017.16201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.