Weinstein, Alexander Generalized axially symmetric potential theory. (English) Zbl 0053.25303 Bull. Am. Math. Soc. 59, 20-38 (1953). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 139 Documents Keywords:partial differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] E. Beltrami, Opere Matematiche, vol. 3, Milano, Hoepli, 1911, pp. 349-382. [2] W. Arndt, Die Torsion von Wellen mit achsensymmetrischen Bohrungen und Hohlräumen, Dissertation, Göttingen, 1916. [3] Lipman Bers and Abe Gelbart, On a class of differential equations in mechanics of continua, Quart. Appl. Math. 1 (1943), 168 – 188. · Zbl 0063.00340 [4] Alexander Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1948), 342 – 354. · Zbl 0038.26204 [5] A. Weinstein, The method of singularities in the physical and in the hodograph plane, Fourth Symposium of Applied Mathematics (in print). · Zbl 0053.14504 [6] L. E. Payne, On axially symmetric flow and the method of generalized electrostatics, Quart. Appl. Math. 10 (1952), 197 – 204. · Zbl 0048.19005 [7] F. G. Mehler, Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung, Math. Ann. 18 (1881), no. 2, 161 – 194 (German). · JFM 13.0779.02 · doi:10.1007/BF01445847 [8] G. Szegö, On the capacity of a condenser, Bull. Amer. Math. Soc. 51 (1945), 325 – 350. · Zbl 0063.07262 [9] E. Hobson, Spherical and ellipsoidal harmonics, Cambridge University Press, 1931. · Zbl 0004.21001 [10] Max Shiffman and D. C. Spencer, The flow of an ideal incompressible fluid about a lens, Quart. Appl. Math. 5 (1947), 270 – 288. · Zbl 0029.28301 [11] F. G. Mehler, Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper, J. Reine Angew. Math. vol. 68 (1868) pp. 134-150. · ERAM 068.1761cj [12] Alexander Weinstein, On cracks and dislocations in shafts under torsion, Quart. Appl. Math. 10 (1952), 77 – 81. · Zbl 0047.43001 [13] L. E. Payne and Alexander Weinstein, Capacity, virtual mass, and generalized symmetrization, Pacific J. Math. 2 (1952), 633 – 641. · Zbl 0048.08102 [14] G. I. Taylor, The energy of a body moving in an infinite fluid with an application to airships, Proc. Roy. Soc. London ser. A vol. 120 (1928) pp. 21-33. · JFM 54.0918.02 [15] M. Schiffer and G. Szegö, Virtual mass and polarization, Trans. Amer. Math. Soc. 67 (1949), 130 – 205. · Zbl 0035.11803 [16] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. · Zbl 0044.38301 [17] P. R. Garabedian and D. C. Spencer, Extremal methods in cavitational flow, J. Rational Mech. Anal. 1 (1952), 359 – 409. · Zbl 0046.18504 [18] M. Hyman, Abstracts (Preliminary Reports), Bull. Amer. Math. Soc. vol. 54 (1948) p. 1065; vol. 55 (1949) pp. 284-285. [19] A. Van Tuyl, On the axially symmetric flow around a new family of half-bodies, Quart. Appl. Math. 7 (1950), 399 – 409. · Zbl 0035.11902 [20] M. A. Sadowsky and E. Sternberg, Elliptic integral representation of axially symmetric flows, Quart. Appl. Math. 8 (1950), 113 – 126. · Zbl 0037.27507 [21] Alexander Weinstein, On Tricomi’s equation and generalized axially symmetric potential theory, Acad. Roy. Belgique. Bull. Cl. Sci. (5) 37 (1951), 348 – 358. · Zbl 0043.10003 [22] Alexander Weinstein, Transonic flow and generalized axially symmetric potential theory, Symposium on theoretical compressible flow, 28 June 1949., Rep. NOLR-1132, Naval Ordnance Laboratory, White Oak, Md., 1950, pp. 73 – 82. [23] Alexander Weinstein, On axially symmetric flows, Quart. Appl. Math. 5 (1948), 429 – 444. · Zbl 0029.17406 [24] Alexander Weinstein, On the torsion of shafts of revolution, Proc. Seventh Internat. Congress Appl. Mech., 1948. v. 1, publisher unknown, 1948, pp. 108 – 119. [25] D. R. Davies and T. S. Walters, The effect of finite width of area on the rate of evaporation into a turbulent atmosphere, Quart. J. Mech. Appl. Math. 4 (1951), 466 – 480. · Zbl 0044.45604 · doi:10.1093/qjmam/4.4.466 [26] Monroe H. Martin, Riemann’s method and the problem of Cauchy, Bull. Amer. Math. Soc. 57 (1951), 238 – 249. · Zbl 0044.09803 [27] J. B. Diaz and M. H. Martin, Riemann’s method and the problem of Cauchy. II. The wave equation in \? dimensions, Proc. Amer. Math. Soc. 3 (1952), 476 – 483. · Zbl 0048.33304 [28] Alexandre Weinstein, Sur le problème de Cauchy pour l’équation de Poisson et l’équation des ondes, C. R. Acad. Sci. Paris 234 (1952), 2584 – 2585 (French). · Zbl 0046.10703 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.