zbMATH — the first resource for mathematics

Comparison of algorithms for the symbolic computation of the NP spin coefficients and curvature components. (English) Zbl 0790.53079
53Z05 Applications of differential geometry to physics
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
Full Text: DOI
[1] Cartan, E. (1963).Leçons sur la géométrie des espaces de Riemann (2nd. ed., Gauthier-Villars, Paris).
[2] MacCallum, M. A. H. (1992). InProc. 4th Canadian Conference on General Relativity and Relativistic Astrophysics, G. Kunstatter, D. E. Vincent, J. G. Williams, eds. (World Scientific, Singapore).
[3] Ernst, F. J. (1968). 7090 Subroutines: Exterior calculus, Proceedings of the Relativity Seminar PORS II-9, Illinois Institute of Technology.
[4] Harrison, G. H. (1969),J. Comput. Phys. 4, 594. · Zbl 0209.48006
[5] Frick, I. (1977). ”SHEEP–user’s guide.” University of Stockholm Report 77-15.
[6] Campbell, S. J., and Wainwright, J. (1977).Gen. Rel. Grav. 8, 987. · Zbl 0417.53012
[7] Barton, D., and Fitch, J. P. (1972).Rep. Prog. Phys. 35, 235.
[8] Krasinski, A., and Perkowski, M. (1981).Gen. Rel. Grav. 13, 67. · Zbl 0475.53058
[9] Schrufer, E., Hehl, F. W., and McCrae, J. D. (1987).Gen. Rel. Grav. 19, 197. · Zbl 0604.53030
[10] Harper, J. F., and Dyer, C. C. (1986).The muTENSOR Reference Manual (Department of Astronomy, University of Toronto, Toronto, Ontario, Canada).
[11] The Soft Warehouse (1983).MuMATH-83 Reference Manual (The Soft Warehouse, Honolulu).
[12] Debever, R. (1964).Cah. Phys. 168–169, 303.
[13] Cahen, M., Debever, R., and Defrise, L. (1967).J. Math. Mech. 16, 761.
[14] Bichteler, K. (1964).Z. Physik 178, 488.
[15] Hauser, I., and Malhiot, R. J. (1975).J. Math. Phys. 15, 816.
[16] Plebański, J. F. (1974).Lecture Notes on Spinors, Tetrads and Forms (Centro de Investigacion y de Estudios Avanzados del IPN, Mexico).
[17] Newman, E. T., and Penrose, R. (1962).J. Math. Phys. 3, 566. · Zbl 0108.40905
[18] Fee, G. J., and McLenaghan, R. G. (1977) InGeneral Relativity and Gravitation 8: Conference Abstracts (University of Waterloo, Waterloo, Ontario, Canada).
[19] Char, B. W., Geddes, K. O., Gentleman, W. M., and Gonnet, G. H. (1983).Lecture Notes in Computer Science 162, 101.
[20] Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge). · Zbl 0449.53018
[21] Helgason, S. (1962).Differential Geometry and Symmetric Spaces (Academic Press, New York). · Zbl 0111.18101
[22] Ehlers, J., and Kundt, W. (1962). InGravitation: An introduction to current research, L. Witten, ed. (Wiley, New York).
[23] McLenaghan, R. G., and Leroy, J. (1972).Proc. Roy. Soc. Lond. A327, 229.
[24] Griffiths, J. B. (1975).Proc. Cambridge Phil. Soc. 77, 559.
[25] Ernst, F. J. (1977).Phys. Rev. 167, 1175.
[26] Bondi, H., van den Burg, M. G. J., and Metzner, A. W. K. (1962).Proc. Roy. Soc. Lond. A269, 21.
[27] Debever, R., McLenaghan, R. G., and Tariq, N. (1979).Gen. Rel. Grav. 10, 853. · Zbl 0432.53009
[28] Kerr, R. P. (1963).Phys. Rev. Lett. 11, 237. · Zbl 0112.21904
[29] Newman, E. T., et al. (1965).J. Math. Phys. 6, 918.
[30] Carter, B. (1977).Phys. Rev. D 16, 3414.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.