×

zbMATH — the first resource for mathematics

The Plancherel formula for complex semisimple Lie groups. (English) Zbl 0055.34003

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Chevalley, Theory of Lie groups, Princeton University Press, 1946. · Zbl 0063.00842
[2] Claude Chevalley, An algebraic proof of a property of Lie groups, Amer. J. Math. 63 (1941), 785 – 793. · Zbl 0026.06001 · doi:10.2307/2371622 · doi.org
[3] I. M. Gelfand and M. A. Naimark, Trudi Mat. Inst. Steklova vol. 36 (1950).
[4] Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900 – 915. · Zbl 0035.01901 · doi:10.2307/1969586 · doi.org
[5] Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28 – 96. · Zbl 0042.12701
[6] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185 – 243. · Zbl 0051.34002
[7] Anthony W. Knapp and Peter E. Trapa, Representations of semisimple Lie groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 7 – 87. · Zbl 0943.22016
[8] Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234 – 253. · Zbl 0055.34002
[9] George Daniel Mostow, A new proof of E. Cartan’s theorem on the topology of semi-simple groups, Bull. Amer. Math. Soc. 55 (1949), 969 – 980. · Zbl 0037.01401
[10] L. Schwartz, Théorie des distributions. Tome I, Actualités Sci. Ind., no. 1091 = Publ. Inst. Math. Univ. Strasbourg 9, Hermann & Cie., Paris, 1950 (French). · Zbl 0037.07301
[11] A. Weil, L’Intégration dans les groupes topologiques et ses applications, Paris, Hermann. 1940. · Zbl 0063.08195
[12] -, C. R. Acad. Sci. Paris vol. 200 (1935) p. 518.
[13] H. Weyl, The structure and representation of continuous groups, Princeton, The Institute for Advanced Study, 1935.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.