zbMATH — the first resource for mathematics

An operational relation. (English) Zbl 0057.05604
Full Text: DOI EuDML
[1] Barnes, E. W.: The asymptotic expansion of integral functions defined by generalised hypergeometric series. Proc. Lond. Math. Soc. (2)5, 59-116 (1907). · JFM 38.0449.01 · doi:10.1112/plms/s2-5.1.59
[2] Copson, E. T.: Functions of a complex variable. Oxford 1935. · Zbl 0012.16902
[3] Bromwich, T. J. I’A.: Normal coordinates in dynamical systems. Proc. Lond. Math. Soc. (2)15, 401-448 (1916). See alsoMcLachlan, N. W.: Complex variable and operational calculus, p. 91. Cambridge 1939. · JFM 46.1181.05 · doi:10.1112/plms/s2-15.1.401
[4] Bromwich, T. J. I’A.: Theory of infinite series. Macmillan 1942.
[5] Goldstein, S.: Operational representations of Whittaker’s confluent hyper-geometric function and Weber’s parabolic cylinder function. Proc. Lond. Math. Soc. (2)34, 103-125 (1932). · Zbl 0005.06002 · doi:10.1112/plms/s2-34.1.103
[6] Whittaker, E. T., andG. N. Watson: Modern analysis, p. 340. Cambridge 1927.
[7] Mitra, S. C.: On certain integrals and expansions involving Bessel functions. Bull. Calc. Math. Soc.25, 81-98 (1933). · Zbl 0008.39702
[8] Gupta, H. C.: On operational calculus. Proc. Nat. Inst. of Sci. India14, 131-156 (1948).
[9] Cossar, J., andA. Erdélyi: Dictionary of Laplace transforms Pt. 3B, 67 Adm. Comp. Ser. London 1946.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.