×

Über den Gaußschen und den Stokesschen Integralsatz. III. (German) Zbl 0057.13304


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lagrange, Nouvelles recherches sur la nature et la propagation du son. Miscellanea Taurinensia 2 pp 45– (1760)
[2] Oeuvres 1 pp 263– (1867)
[3] Gauss, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo nova tractata. Commentationes societatis regiae scientiarum Gottingensis recentiores 2 pp 2– (1813)
[4] Werke 5 pp 5– (1877)
[5] 1828 An essay on the application of mathematical analysis to the theories of electricity and magnetism. Nottingham, Art. 3;
[6] J. reine angew. Math. 44 pp 360– (1852)
[7] Ostrogradsky, Mém. Acad. Impér. Sci. de St. Pétersbourg, Sci. math. phys. natur., VI. Sér. 1 pp 129– (1831)
[8] Ostrogradsky, Mém. Acad. Impér. Sci. de St. Pétersbourg, Sci. math. phys. natur., VI. Sér. 3 pp 35– (1838)
[9] 1851 Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen komplexen Größe. Göttingen, S. 8–9;
[10] Werke Leipzig 1876, S. 12–14.
[11] 1854 Smith’s prize examination paper. Cambridge Univ. Calendar;
[12] Math. and Phys. Papers 5 pp 320– (1905)
[13] 1861 Schwere, Elektrizität und Magnetismus. Vorlesung Univ. Göttingen, herausgegeben von K. Hattendorf, Hannover 1876, S. 252–254.
[14] 1861 Zur allgemeinen Theorie der Bewegung der Flüssigkeiten. Göttingen, S. 34–37.
[15] Ostrogradsky, Sur une intégrale définie. Bull. Acad. Impér. Sci. de St. Pétersbourg 3 pp 65– (1861)
[16] Betti, Ann. Mat. pura appl., II. Ser. 4 pp 140– (1870)
[17] 1873 Treatise on Electricity and Magnetism. I. Oxford, Art. 24, S. 25–27.
[18] Poincaré, Sur les résidus des intégrales doubles. Acta math. 9 pp 321– (1887)
[19] Oeuvres 3 pp 446– (1934) · JFM 46.0034.12
[20] 1894 Leçons sur la théorie générale des surfaces. III. Paris, S. 122–125.
[21] Poincaré, J. École polytechn., II. Sér. 1 pp 1– (1895)
[22] Franchis, Rend. Circ. mat. Palermo 12 pp 163– (1898)
[23] 1899 Les méthodes nouvelles de la mécanique céleste. III. Paris, S. 10.
[24] Pringsheim, S. - Ber. math.-naturw. Kl. Bayer. Akad. Wiss. München 29 pp 39– (1899)
[25] Hamburger, J. reine angew. Math. 124 pp 28– (1902)
[26] Porter, Ann. of Math., II. Ser. 7 pp 1– (1905)
[27] Poli, Atti Accad. Sci. Torino, Cl. Sci. fis. mat. natur. 49 pp 218– (1914)
[28] Amer. J. Math. 36 pp 137– (1914)
[29] Gross, Das isoperimetrische Problem bei Doppelintegralen. Monatsh. Math. Phys. 27 pp 70– (1916)
[30] Lichtenstein, Arch. Math Phys., III. Ser. 27 pp 31– (1918)
[31] Daniell, Integrals around general boundaries. Bull. Amer. math. soc. 25 pp 65– (1918) · JFM 47.0240.03 · doi:10.1090/S0002-9904-1918-03148-0
[32] Brouwer, Opmerking over meervoudige integralen. Amst. Ak. Versl. 28 pp 116– (1919) · JFM 47.0906.03
[33] Picone, Atti Accad. naz. Lincei, Rend., Cl. Sci. fis. mat. natur., V. Ser. 28 pp 270– (1919)
[34] Picone, Sul teorema di Green nel piano e nello spazio. Rend. Circ. mat. Palermo 43 pp 239– (1919) · JFM 47.0453.03 · doi:10.1007/BF03014672
[35] van Vleck, Ann. of Math., II. Ser. 22 pp 226– (1921)
[36] 1922 Traité d’Analyse. I. 3. Aufl., Paris, S. 142–145.
[37] Franklin, Ann of Math., II. Ser. 24 pp 213– (1923)
[38] Pollard, Proc. London math. Soc., II. Ser. 21 pp 456– (1923)
[39] 1923 Invariantentheorie. Groningen, S. 338–340.
[40] 1924 Der Ricci-Kalkül. Berlin, S. 95–98.
[41] Bray, Ann. of Math., II. Ser. 26 pp 278– (1925)
[42] Young, Proc. London math. Soc., II. Ser. 24 pp 21– (1925)
[43] Buhl, Formules stokiennes. Mém. Sci. math. 16 (1926)
[44] Schauder, The theory of surface measure. Fundamenta Math. 8 pp 1– (1926)
[45] Mullings, The rotational derivative and some applications. Amer. math. Monthly 34 pp 241– (1927) · JFM 53.0716.05
[46] Szücs, Acta Sci. math., Szeged 3 pp 81– (1927)
[47] 1928 Bemerkungen über den Stokesschen Satz. Bull. intern. Acad. Pol. Sci. Lett., Cl. Sci. math. nat., Sér. A, 1–6.
[48] Smith, Trans. Amer. math. Soc. 30 pp 405– (1928)
[49] 1929 Foundations of Potential Theory. Berlin, S. 84–121.
[50] Caccioppoli, Rend. Circ. mat. Palermo 54 pp 217– (1930)
[51] 1930 Lehrbuch der Differentialgeometrie. II. Leipzig, S. 237–240.
[52] 1931 Vorlesungen über Differential- und Integralrechnung. II. 2. Aufl., Berlin, S. 318–321.
[53] 1933 Knopp, Einführung in die höhere Mathematik. III. 6. Aufl., Leipzig, S. 428–431 u. 449–452.
[54] Estermann, Math. Z. 37 pp 556– (1933)
[55] 1933 Cours d’analyse mathématique. I. 5. Aufl., Paris, S. 338–340.
[56] Favard, Ann. sci. École norm. sup., III. Sér. 51 pp 1– (1934)
[57] Morrey, A class of representations of manifolds. I. II. Amer. J. Math. 55 pp 683– (1933) · Zbl 0008.07202
[58] A class of representations of manifolds. I. II. Amer. J. Math. 56 pp 275– (1934)
[59] Lebesgue, Sur la mesure des grandeurs. Enseignement math. 33 pp 176– (1935) · JFM 61.0965.03
[60] Randolph, Carathéodory measure and and a generalization of the Gauß-Green Lemma. Trans. Amer. math. Soc. 38 pp 531– (1935) · JFM 61.0241.02
[61] Cairns, The generalized theorem of Stokes. Trans. Amer. math. Soc. 40 pp 167– (1936) · Zbl 0015.12701
[62] Bochner, Remark on the theorem of Green. Duke math. J. 3 pp 334– (1937) · JFM 63.0712.05
[63] Wilkosz, Prace mat.-fiz. 44 pp 109– (1937)
[64] 1938 Aumann, Differential- und Integralrechnung. III. 1. Aufl., Berlin, S. 169–178.
[65] de Possel, Bull. Sci. math., II. Sér. 62 pp 262– (1938)
[66] Maak, Oberflächenintegral und Stokes-Formel im gewöhnlichen Raume. Math. Ann. 116 pp 574– (1939) · Zbl 0020.26102
[67] Schmidt, Math. Z. 44 pp 689– (1939)
[68] Reid, Amer. J. Math. 63 pp 563– (1941)
[69] Ridder, Nieuw Arch. Wiskunde, II. R. 21 pp 28– (1941)
[70] Gillis, Acad. roy. Belgique, Cl. Sci., Mém., Coll 4. II. Sér. 20 (1943)
[71] Federer, The Gauß-Green Theorem. Trans. Amer. math. Soc. 58 pp 44– (1945) · Zbl 0060.14102
[72] 1947 Algèbre et analyse linéaires. Paris, S. 195–196.
[73] Lorentz, Beweis des Gaußschen Integralsatzes. Math. Z. 51 pp 61– (1949)
[74] Verblunsky, J. London math. Soc. 24 pp 146– (1949)
[75] 1949 , Pfaff’s probles and its generalizations. Oxford, S. 67–70.
[76] Iseki, J. math. Soc. Japan 2 pp 114– (1950)
[77] Okamura, Mem. Coll. Sci. Univ. Kyoto, Ser. A 26 pp 5– (1950)
[78] Mizohata, Mem. Coll. Sci. Univ. Kyoto, Ser. A 26 pp 15– (1950)
[79] Mizohata, Mem. Coll. Sci. Univ. Kyoto, Ser. A 26 pp 175– (1950)
[80] Cecconi, Sul teorema di Gauss-Green. Rend. Sem. mat. Univ. Padova 20 pp 194– (1951)
[81] Potts, J. London math. Soc. 26 pp 302– (1951)
[82] Caccioppoli, I, II. Atti Accad. naz. Lincei, Rend., Cl. Sci. fis. mat. natur., VIII. Ser. 12 pp 3– (1952)
[83] Caccioppoli, I, II, III. Atti Accad. naz. Lincei, Rend., Cl. Sci. fis. mat. natur., VIII. Ser. 12 pp 219– (1952)
[84] Cecconi, Sul teorema di Stokes. Rivista. Mat. Univ. Parma 3 pp 233– (1952)
[85] Stoll, Teil: Mehrfache Integrale auf komplexen Mannigfaltigkeiten. Math. Z. 57 pp 116– (1952) · Zbl 0047.32401
[86] Caccioppoli, Atti IV. Congr. Un. mat. Ital. 2 pp 41– (1953)
[87] 1953 Der Begriff der Ergiebigkeit eines Vektorfeldes und der Gaußsche Integralsatz. Ber. Math. Tagung Berlin 1953. · Zbl 0052.38203
[88] 1954 , Differential- und Integralrechnung. III. 2. Aufl., Berlin, Nr. 11.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.