On locally convex vector spaces of continuous functions. (English) Zbl 0057.33801

Full Text: DOI


[1] N. Bourbaki: Sur certains spaces vectoriels topologiques, Ann. Inst. Fourier II (1950). · Zbl 0042.35302
[2] J. A. Dieudonne: Recent developments in the theory of locally-convex spaces, Bull. Amer. Math. Soc, 59 (1953). · Zbl 0053.25701
[3] E. Hewitt: Rings of real valued continuous functions, Trans. Amer. Math. Soc, 64 (1948). JSTOR: · Zbl 0032.28603
[4] T. Shirota: A class of topological spaces, Osaka Math. J., 4 (1952). · Zbl 0047.41704
[5] L. Gillman and H. Henriksen: Concerning rings of contmuous functions, Trans. Amer. Math. Soc. (to appear). · Zbl 0058.10003
[6] G. Mackey: On infinite-dimensional linear spaces, Trans. Amer. Math. Soc, 57 (1945). JSTOR: · Zbl 0061.24301
[7] W. F. Donoghue and K. T. Smith: On the symmetry and bounded closure of locally convex spaces, Trans. Amer. Math. Soc, 73 (1952). JSTOR: · Zbl 0047.10601
[8] E. Hewitt: Linear functionals on spaces of continuous functions, Fund. Math., 37 (1950). · Zbl 0040.06401
[9] L. Nachbin: On the continuity of positive linear transformations, proceeding of the international congress of mathematicians (1950). · Zbl 0035.35402
[10] Cf. R. Sikorski: Remark on some topological spaces of high power, Fund. Math., 37 (1950). · Zbl 0041.09705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.