×

zbMATH — the first resource for mathematics

The problem of Cauchy for linear, hyperbolic equations of second order. (English) Zbl 0059.08801

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beltrami, Rend. Lincei 1 pp 99– (1892)
[2] first semester). Republished in Opere Matematiche di Eugcnio Beltrami, Hoepli, Milan, 1920, Vol. 4, pp. 499–510.
[3] and , Methoden der mathematischen Physik, Vol. II, Springer, Berlin, 1937; · Zbl 0017.39702 · doi:10.1007/978-3-642-47434-7
[4] Methoden der mathematischen Physik, Interscience, New York. · Zbl 0073.03601
[5] Diaz, Proc. Amer. Math. Soc. 3 pp 476– (1952)
[6] Fermi, Rend. Lincei 31 pp 21– (1922)
[7] Foures-Bruhat, Acta Math. 88 pp 141– (1952)
[8] Fremberg, Kungl. Fysiogr. Sällsk. i Lund Förhandl. 15 (1945)
[9] Fremberg, Communic. Semin. Math. de l’Univ. de Lund 7 (1946)
[10] Friedrichs, Abstract, Bull. Anier. Math. Soc. 46 pp 754– (1940)
[11] Properties of the wave equation related to Huygens’ Principle. Unpublished dissertation, New York University, 1953.
[12] The Theory of Functions of Real Variables, McGraw-Hill, New York, 1946.
[13] Lectures on Cauchy’s Problem, Yale University Press, New Haven, 1923.
[14] Le Problème de Cauchy et les Équations aux Dérivées Partielles linéaires Hyperboliques, Hermann, Paris, 1932.
[15] Lax, Bull. Amer. Math. Soc. 58 pp 182– (1952)
[16] On linear hyperbolic differential equations with variable coefficients on vector space, Ann. Math. Studies, No. 33.
[17] Malmheden, Comm. Semin. Math. de l’Univ. de Lund 8 (1947)
[18] Martin, Bull. Amer. Math. Soc. 57 pp 238– (1951)
[19] Mathisson, Math. Ann. 107 pp 400– (1932)
[20] Petrowsky, Rec. Math. 2 pp 815– (1937)
[21] Riesz, Acta Math. 81 pp 1– (1949)
[22] Das Schauder, Fund. Math. 24 pp 213– (1935)
[23] Sur une généralisation de la formule de Kirchoff, Doklady Akad. Nauk, N.S., 1933, No. 6, pp. 258–262.
[24] Sobolev, Math. Sbornik N.S. 1 pp 39– (1936)
[25] Yosida, Proc. Japan Acad. 28 pp 396– (1952)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.