×

The representation of \(e^{-x^\lambda}\) as a Laplace integral. (English) Zbl 0060.25007


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. Bochner, Completely monotone functions of the Laplace operator for torus and sphere, Duke Math. J. 3 (1937), no. 3, 488 – 502. · Zbl 0017.30902
[2] E. Hille and J. D. Tamarkin, On moment functions, Proc. Nat. Acad. Sci. U. S. A. vol. 19 (1933) pp. 902-908. · Zbl 0008.00903
[3] Emil L. Post, Generalized differentiation, Trans. Amer. Math. Soc. 32 (1930), no. 4, 723 – 781. · JFM 56.0349.01
[4] David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. · Zbl 0063.08245
[5] G. Doetsch, Theorie und Anwendung der Laplace-Transformationen, Berlin, 1937. · JFM 63.0368.01
[6] Pierre Humbert, Nouvelles correspondances symboliques, Bull. Sci. Math. (2) 69 (1945), 121 – 129 (French). · Zbl 0060.25112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.