×

Structure theorems for a special class of Banach algebras. (English) Zbl 0060.26906


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albert, A. A., Structure of algebras, Amer. Math. Soc. Colloquium Publications, vol. 24, 1939. · Zbl 0023.19901
[2] Banach, S., Théorie des opérations linéaires, Warsaw, 1932. · JFM 58.0420.01
[3] I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 3 – 24 (German, with Russian summary). · JFM 67.0406.02
[4] I. Gelfand and M. Neumark, On the imbedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 197 – 213 (English, with Russian summary). · Zbl 0060.27006
[5] Gottfried Köthe, Abstrakte Theorie nichtkommutativer Ringe mit einer Anwendung auf die Darstellungstheorie kontinuierlicher Gruppen, Math. Ann. 103 (1930), no. 1, 545 – 572 (German). · JFM 56.0144.01 · doi:10.1007/BF01455710
[6] F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116 – 229. · Zbl 0014.16101 · doi:10.2307/1968693
[7] Riesz, F., Über die linearen Transformationen des komplexen Hilbertschen Raumes, Acta Univ. Szeged. vol. 5 (1930-1932) pp. 23-54. · JFM 56.0356.02
[8] I. E. Segal, The group ring of a locally compact group. I, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 348 – 352. · Zbl 0063.06858
[9] -, Ring properties of certain classes of functions, Dissertation, Yale, 1940.
[10] van der Waerden, B. L., Moderne Algebra, Berlin, 1931. · Zbl 0002.00804
[11] Weil, A., L’Integration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, No. 869, 1940. · Zbl 0063.08195
[12] J. H. M. Wedderburn, Algebras which do not possess a finite basis, Trans. Amer. Math. Soc. 26 (1924), no. 4, 395 – 426. · JFM 50.0040.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.